Recent advances in cathodes for all-solid-state lithium-sulfur batteries
-
* Corresponding authors.
E-mail addresses: wangbo19880804@163.com (B. Wang), wangdianlonghit@163.com (D. Wang).
Citation:
Shengbo Yang, Bo Wang, Qiang Lv, Nan Zhang, Zekun Zhang, Yutong Jing, Jinbo Li, Rui Chen, Bochen Wu, Pengfei Xu, Dianlong Wang. Recent advances in cathodes for all-solid-state lithium-sulfur batteries[J]. Chinese Chemical Letters,
;2023, 34(7): 107783.
doi:
10.1016/j.cclet.2022.107783
W.P. Wang, J. Zhang, J. Chou, et al., Adv. Energy Mater. 11(2021) 2000791.
doi: 10.1002/aenm.202000791
R.P. Fang, J.T. Xu, D.W. Wang, Energy Environ. Sci. 13(2020) 432–471.
doi: 10.1039/C9EE03408K
S. Xia, X. Wu, Z. Zhang, et al., Chem 5(2019) 753–785.
doi: 10.1016/j.chempr.2018.11.013
X. Wang, N. Deng, L. Wei, et al., Chem. Asian J. 16(2021) 2852–2870.
doi: 10.1002/asia.202100765
C. Ma, B. Wang, T. Zhang, et al., CrystEngComm 24(2022) 3189–3198.
doi: 10.1039/D1CE01588E
R.C. Xu, S.Z. Zhang, X.L. Wang, et al., Chem. Eur. J. 24(2018) 6007–6018.
doi: 10.1002/chem.201704568
P. Bonnick, E. Nagai, J. Muldoon, J. Electrochem. Soc. 165(2017) A6005–A6007.
E. Umeshbabu, B. Zheng, Y. Yang, Electrochem. Energy Rev. 2(2019) 199–230.
doi: 10.1007/s41918-019-00029-3
Q. Lv, Y. Jiang, B. Wang, et al., Cell Rep. Phys. Sci. 3(2022) 100706.
doi: 10.1016/j.xcrp.2021.100706
M. Ge, X. Zhou, Y. Qin, et al., Chin. Chem. Lett. 33(2022) 3894–3898.
doi: 10.1016/j.cclet.2021.11.073
J. Liu, H. Yuan, H. Liu, et al., Adv. Energy Mater. 12(2021) 2100748.
A.B. Haruna, T.P. Mofokeng, J.J. Ogada, et al., Electrochem. Commun. 136(2022) 107248.
doi: 10.1016/j.elecom.2022.107248
X. Huang, B. Luo, P. Chen, et al., Coord. Chem. Rev. 422(2020) 213445.
doi: 10.1016/j.ccr.2020.213445
J. Zhang, G. Zhang, Z. Chen, et al., Energy Stor. Mater. 26(2020) 513–533.
M. Jiang, Z. Zhang, B. Tang, et al., J. Energy Chem. 58(2021) 300–317.
doi: 10.1016/j.jechem.2020.10.009
R.Y. Fang, H.H. Xu, B.Y. Xu, et al., Adv. Funct. Mater. 31(2021) 2001812.
doi: 10.1002/adfm.202001812
X.F. Yang, J. Luo, X.L. Sun, Chem. Soc. Rev. 49(2020) 2140–2195.
doi: 10.1039/C9CS00635D
B.B. Wu, S.Y. Wang, W.J. Evans, et al., J. Mater. Chem. A 4(2016) 15266–15280.
doi: 10.1039/C6TA05439K
S. Hong, Y. Wang, N. Kim, S.B. Lee, J. Mater. Sci. 56(2021) 8358–8382.
doi: 10.1007/s10853-021-05832-2
Q. Wang, Y. Chen, J. Jin, Z. Wen, Solid State Ionics 357(2020) 115500.
doi: 10.1016/j.ssi.2020.115500
G.H. Chang, Y.S. Oh, S. Kang, et al., Electrochim. Acta 358(2020) 136884.
doi: 10.1016/j.electacta.2020.136884
J.P. Mwizerwa, Q. Zhang, F. Han, et al., ACS Appl. Mater. Interfaces 12(2020) 18519–18525.
doi: 10.1021/acsami.0c01607
Y. Wang, G. Wang, P. He, et al., Chem. Eng. J. 393(2020) 124705.
doi: 10.1016/j.cej.2020.124705
J. Yue, Y. Huang, S. Liu, et al., ACS Appl. Mater. Interfaces 12(2020) 36066–36071.
doi: 10.1021/acsami.0c08564
S. Choi, I. Yoon, W.T. Nichols, D. Shin, Ceram. Int. 44(2018) 7450–7453.
doi: 10.1016/j.ceramint.2018.01.104
C. Zhang, Y. Lin, Y.W. Zhu, et al., RSC Adv. 7(2017) 19231–19236.
doi: 10.1039/C7RA02174G
B.S. Zhao, L. Wang, S. Liu, et al., ACS Appl. Mater. Interfaces 14(2021) 1212–1221.
J. Wang, X. Yan, Z. Zhang, et al., ACS Appl. Mater. Interfaces 12(2020) 41323–41332.
doi: 10.1021/acsami.0c10463
C. Yan, Y. Zhou, H. Cheng, et al., Energy Stor. Mater. 44(2022) 136–144.
M. Yan, W.P. Wang, Y.X. Yin, et al., EnergyChem 1(2019) 100002.
doi: 10.1016/j.enchem.2019.100002
F. Li, Q. Liu, J. Hu, et al., Nanoscale 11(2019) 15418–15439.
doi: 10.1039/C9NR04415A
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat. Mater. 11(2012) 19–29.
doi: 10.1038/nmat3191
Y. De Luna, M. Abdullah, S.N. Dimassi, N. Bensalah, Ionics 27(2021) 4937–4960.
doi: 10.1007/s11581-021-04284-7
Z. Wang, X. Xu, S. Ji, et al., J. Mater. Sci. Technol. 55(2020) 56–72.
doi: 10.1016/j.jmst.2019.09.037
I. Gracia, H. Ben Youcef, X. Judez, et al., J. Power Sources 390(2018) 148–152.
doi: 10.1016/j.jpowsour.2018.04.052
X. Li, D.H. Wang, H.C. Wang, et al., ACS Appl. Mater. Interfaces 11(2019) 22745–22753.
doi: 10.1021/acsami.9b05212
X. Judez, H. Zhang, C.M. Li, et al., J. Electrochem. Soc. 165(2018) A6008–A6016.
doi: 10.1149/2.0041801jes
R. Blanga, M. Goor, L. Burstein, et al., J. Solid State Electrochem. 20(2016) 3393–3404.
doi: 10.1007/s10008-016-3303-7
Y.X. Song, Y. Shi, J. Wan, et al., Energy Environ. Sci. 12(2019) 2496–2506.
doi: 10.1039/C9EE00578A
X.Y. Tao, Y.Y. Liu, W. Liu, et al., Nano Lett. 17(2017) 2967–2972.
doi: 10.1021/acs.nanolett.7b00221
S. Bag, C. Zhou, P.J. Kim, et al., Energy Stor. Mater. 24(2020) 198–207.
M. Agostini, D.H. Lim, M. Sadd, et al., ChemSusChem 10(2017) 3490–3496.
doi: 10.1002/cssc.201700977
H. Yuan, H.X. Nan, C.Z. Zhao, et al., Batteries Supercaps 3(2020) 596–603.
doi: 10.1002/batt.202000051
Y. Zhang, T. Liu, Q. Zhang, et al., J. Mater. Chem. A 6(2018) 23345–23356.
doi: 10.1039/C8TA08420C
R.C. Xu, Z. Wu, S.Z. Zhang, et al., Chem. Eur. J. 23(2017) 13950–13956.
doi: 10.1002/chem.201703116
B. Ding, J. Wang, Z. Fan, et al., Mater. Today 40(2020) 114–131.
doi: 10.1016/j.mattod.2020.05.020
Y.Z. Sun, J.Q. Huang, C.Z. Zhao, Q. Zhang, Sci. China Chem. 60(2017) 1508–1526.
doi: 10.1007/s11426-017-9164-2
M. Dirican, C.Y. Yan, P. Zhu, X.W. Zhang, Mater. Sci. Eng. R: Rep. 136(2019) 27–46.
doi: 10.1016/j.mser.2018.10.004
D.N. Lei, K. Shi, H. Ye, et al., Adv. Funct. Mater. 28(2018) 1707570.
doi: 10.1002/adfm.201707570
T. Krauskopf, H. Hartmann, W.G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 11(2019) 14463–14477.
doi: 10.1021/acsami.9b02537
H.U. Choi, J.S. Jin, J.Y. Park, H.T. Lim, J. Alloys Compd. 723(2017) 787–794.
doi: 10.1016/j.jallcom.2017.06.135
M. Nagao, A. Hayashi, M. Tatsumisago, Electrochim. Acta 56(2011) 6055–6059.
doi: 10.1016/j.electacta.2011.04.084
M. Nagao, A. Hayashi, M. Tatsumisago, Energy Technol. 1(2013) 186–192.
doi: 10.1002/ente.201200019
S. Kinoshita, K. Okuda, N. Machida, et al., Solid State Ionics 256(2014) 97–102.
doi: 10.1016/j.ssi.2013.12.045
X.A. Liang, Z.Y. Wen, Y. Liu, et al., J. Power Sources 196(2011) 3655–3658.
doi: 10.1016/j.jpowsour.2010.12.052
L.P. Hou, H. Yuan, C.Z. Zhao, et al., Energy Stor. Mater. 25(2020) 436–442.
C. Zhou, S. Bag, T. He, et al., Appl. Mater. Today 19(2020) 100585.
doi: 10.1016/j.apmt.2020.100585
A.S. Alzahrani, M. Otaki, D. Wang, et al., ACS Energy Lett. 6(2021) 413–418.
doi: 10.1021/acsenergylett.0c01956
R. Kumar, J. Liu, J.Y. Hwang, Y.K. Sun, J. Mater. Chem. A 6(2018) 11582–11605.
doi: 10.1039/C8TA01483C
X.Y. Yao, N. Huang, F.D. Han, et al., Adv. Energy Mater. 7(2017) 1602923.
doi: 10.1002/aenm.201602923
Q. Zhang, N. Huang, Z. Huang, et al., J. Energy Chem. 40(2020) 151–155.
doi: 10.1016/j.jechem.2019.03.006
Q. Zhao, J.X. Zheng, L. Archer, ACS Energy Lett. 3(2018) 2104–2113.
doi: 10.1021/acsenergylett.8b01001
Y.J. Liu, P. He, H.S. Zhou, Adv. Energy Mater. 8(2018) 1701602.
doi: 10.1002/aenm.201701602
F. Wang, B. Wang, J. Li, et al., ACS Nano 15(2021) 2197–2218.
doi: 10.1021/acsnano.0c10664
M. Nagao, A. Hayashi, M. Tatsumisago, J. Mater. Chem. 22(2012) 10015–10020.
doi: 10.1039/c2jm16802b
M. Nagao, A. Hayashi, M. Tatsumisago, et al., J. Power Sources 274(2015) 471–476.
doi: 10.1016/j.jpowsour.2014.10.043
H. El-Shinawi, E.J. Cussen, S.A. Corr, Nanoscale 11(2019) 19297–19300.
doi: 10.1039/C9NR06239D
L. Lodovico, S.M. Hosseini, A. Varzi, S. Passerini, Energy Technol. 7(2019) 1801013.
doi: 10.1002/ente.201801013
T. Takeuchi, H. Kageyama, K. Nakanishi, et al., J. Electrochem. Soc. 157(2010) A1196–A1201.
doi: 10.1149/1.3486083
S.M. Hosseini, A. Varzi, S. Ito, et al., Energy Stor. Mater. 27(2020) 61–68.
U. Ulissi, S. Ito, S.M. Hosseini, et al., Adv. Energy Mater. 8(2018) 1801462.
doi: 10.1002/aenm.201801462
Q. Zhang, Z.G. Ding, G.Z. Liu, et al., Energy Stor. Mater. 23(2019) 168–180.
N. Machida, K. Kobayashi, Y. Nishikawa, T. Shigematsu, Solid State Ionics 175(2004) 247–250.
doi: 10.1016/j.ssi.2003.11.033
A. Hayashi, T. Ohtomo, F. Mizuno, et al., Electrochim. Acta 50(2004) 893–897.
doi: 10.1016/j.electacta.2004.02.061
M. Chen, X. Yin, M.V. Reddy, S. Adams, J. Mater. Chem. A 3(2015) 10698–10702.
doi: 10.1039/C5TA02372F
Q. Zhang, H.L. Wan, G.Z. Liu, et al., Nano Energy 57(2019) 771–782.
doi: 10.1016/j.nanoen.2019.01.004
T. Matsuyama, A. Hayashi, T. Ozaki, et al., J. Mater. Chem. A 3(2015) 14142–14147.
doi: 10.1039/C5TA02263K
K. Liu, H. Zhao, D. Ye, J. Zhang, Chem. Eng. J. 417(2021) 129309.
doi: 10.1016/j.cej.2021.129309
J.L. Wang, J. Yang, J.Y. Xie, N.X. Xu, Adv. Mater. 14(2002) 963–965.
doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
J.E. Trevey, J.R. Gilsdorf, C.R. Stoldt, et al., J. Electrochem. Soc. 159(2012) A1019–A1022.
doi: 10.1149/2.052207jes
Y.Y. Zhang, Y.L. Sun, L.F. Peng, et al., Energy Stor. Mater. 21(2019) 287–296.
W. Zhang, Y. Zhang, L. Peng, et al., Nano Energy 76(2020) 105083.
doi: 10.1016/j.nanoen.2020.105083
A. Hayashi, R. Ohtsubo, M. Nagao, M. Tatsumisago, J. Mater. Sci. 45(2010) 377–381.
doi: 10.1007/s10853-009-3948-z
A. Hayashi, R. Ohtsubo, T. Ohtomo, et al., J. Power Sources 183(2008) 422–426.
doi: 10.1016/j.jpowsour.2008.05.031
M.Y. Wang, X.H. Xia, Y. Zhong, et al., Chem. Eur. J. 25(2019) 3710–3725.
doi: 10.1002/chem.201803153
T. Ould Ely, D. Kamzabek, D. Chakraborty, M.F. Doherty, ACS Appl. Energy Mater. 1(2018) 1783–1814.
doi: 10.1021/acsaem.7b00153
J. Yang, B. Wang, F. Jin, et al., Nanoscale 12(2020) 4552–4561.
doi: 10.1039/C9NR10491G
M. Nagao, Y. Imade, H. Narisawa, et al., J. Power Sources 222(2013) 237–242.
doi: 10.1016/j.jpowsour.2012.08.041
M. Nagao, K. Suzuki, Y. Imade, et al., J. Power Sources 330(2016) 120–126.
doi: 10.1016/j.jpowsour.2016.09.009
F.D. Han, J. Yue, X.L. Fan, et al., Nano Lett. 16(2016) 4521–4527.
doi: 10.1021/acs.nanolett.6b01754
T. Hakari, A. Hayashi, M. Tatsumisago, Adv. Sustain. Syst. 1(2017) 1700017.
doi: 10.1002/adsu.201700017
T. Hakari, A. Hayashi, M. Tatsumisago, Chem. Lett. 44(2015) 1664–1666.
doi: 10.1246/cl.150758
H. Nagata, Y. Chikusa, J. Power Sources 263(2014) 141–144.
doi: 10.1016/j.jpowsour.2014.04.032
H. Nagata, Y. Chikusa, Energy Technol. 2(2014) 753–756.
doi: 10.1002/ente.201402040
N. Tanibata, H. Tsukasaki, M. Deguchi, et al., J. Mater. Chem. A 5(2017) 11224–11228.
doi: 10.1039/C7TA01481C
L. Xu, Y. Lu, C.Z. Zhao, et al., Adv. Energy Mater. 11(2020) 2002360.
Y. Lu, C.Z. Zhao, H. Yuan, et al., Matter 5(2022) 876–898.
doi: 10.1016/j.matt.2022.01.011
J.K. Hu, H. Yuan, S.J. Yang, et al., J. Energy Chem. 71(2022) 612–618.
doi: 10.1016/j.jechem.2022.04.048
S. Gu, X. Huang, Q. Wang, et al., J. Mater. Chem. A 5(2017) 13971–13975.
doi: 10.1039/C7TA04017B
M. Liu, X.Y. Qin, Y.B. He, et al., J. Mater. Chem. A 5(2017) 5222–5234.
doi: 10.1039/C7TA00290D
Y. Lu, X. Huang, Z. Song, et al., Energy Stor. Mater. 15(2018) 282–290.
S. Li, S.Q. Zhang, L. Shen, et al., Adv. Sci. 7(2020) 1903088.
doi: 10.1002/advs.201903088
P. Zhu, C. Yan, J. Zhu, et al., Energy Stor. Mater. 17(2019) 220–225.
L. Wang, X. Yin, C. Jin, et al., ACS Appl. Energy Mater. 3(2020) 11540–11547.
doi: 10.1021/acsaem.0c02347
X. Liang, L. Wang, X. Wu, et al., J. Energy Chem. 73(2022) 370–386.
doi: 10.1016/j.jechem.2022.06.035
R. Xu, B. Xiao, C. Xuan, et al., ACS Appl. Mater. Interfaces 13(2021) 34274–34281.
doi: 10.1021/acsami.1c07805
W. Kou, J. Wang, W. Li, et al., J. Membr. Sci. 634(2021) 119432.
doi: 10.1016/j.memsci.2021.119432
J. Lee, K. Heo, Y.W. Song, et al., J. Electrochem. Sci. Technol. 13(2022) 199–207.
doi: 10.33961/jecst.2021.00864
F. Chen, P.M.G. Puente, Y. Zhang, et al., Solid State Ionics 380(2022) 115926.
doi: 10.1016/j.ssi.2022.115926
Y. Li, D. Zhang, X. Xu, et al., J. Energy Chem. 60(2021) 32–60.
doi: 10.1016/j.jechem.2020.12.017
G.L. Zhu, C.Z. Zhao, H.J. Peng, et al., Adv. Funct. Mater. 31(2021) 2101985.
doi: 10.1002/adfm.202101985
X. Huang, C. Liu, Y. Lu, et al., J. Power Sources 382(2018) 190–197.
doi: 10.1016/j.jpowsour.2017.11.074
H. Tsukasaki, M. Otoyama, Y. Mori, et al., J. Power Sources 367(2017) 42–48.
doi: 10.1016/j.jpowsour.2017.09.031
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Jun Jiang , Tong Guo , Wuxin Bai , Mingliang Liu , Shujun Liu , Zhijie Qi , Jingwen Sun , Shugang Pan , Aleksandr L. Vasiliev , Zhiyuan Ma , Xin Wang , Junwu Zhu , Yongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776