Citation:
Dongxue Yu, Lin Xu, Huizhu Zhang, Jia Li, Weie Wang, Libin Yang, Xin Jiang, Bing Zhao. A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO2 p-n heterojunction[J]. Chinese Chemical Letters,
;2023, 34(7): 107771.
doi:
10.1016/j.cclet.2022.107771
-
In this paper, CuO/TiO2 p-n heterojunction was developed as a new surface enhanced Raman scattering (SERS) substrate to magnify Raman signal of 4-mercaptobenzoic acid (4-MBA) molecule. In the heterojunction-molecule system, CuO as an "electron capsule" can not only offer more electrons to inject into the surface state energy level of TiO2 and consequently bring additional charge transfer, but also improve photogenerated carrier separation efficiency itself due to strong interfacial coupling in the interface of heterojunction, which together boost SERS performance of the heterojunction substrate. As expected, owing to the enhanced charge collection capacity and the improvement of photogenerated carrier separation efficiency derived from internal electric field and strong interface coupling provided in the interface of heterojunction, this substrate exhibits excellent SERS detection sensitivity towards 4-MBA, with a detection limit as low as 1 × 10−10 mol/L and an enhancement factor of 8.87 × 106.
-
-
-
[1]
I. Alessandri, J.R. Lombardi, Chem. Rev.116 (2016) 14921–14981. doi: 10.1021/acs.chemrev.6b00365
-
[2]
L.J. Xu, C. Zong, X.S. Zheng, et al., Anal. Chem. 86 (2014) 2238–2245. doi: 10.1021/ac403974n
-
[3]
Y.J. Lai, L.J. Dong, R. Liu, et al., Chin. Chem. Lett. 31 (2020) 2437–2441. doi: 10.1016/j.cclet.2020.04.050
-
[4]
G.R. Wu, W.S. Li, W.J. Du, et al., Chin. Chem. Lett. 33 (2022) 519–522. doi: 10.1016/j.cclet.2021.06.051
-
[5]
C.G. Qiu, Z.Y. Cheng, C.Z. Lv, R. Wang, F.B. Yu, Chin. Chem. Lett. 32 (2021) 2369–2379. doi: 10.1016/j.cclet.2021.03.016
-
[6]
Y.S. Peng, C.L. Lin, Y.Y. Li, et al., Matter5 (2022) 694–709. doi: 10.1016/j.matt.2021.11.028
-
[7]
Z.A. Zhou, X.H. Bai, et al., Chin. Chem. Lett. 32 (2021) 1497–1501. doi: 10.1016/j.cclet.2020.10.021
-
[8]
H. Li, Q. Zhang, C.C.R. Yap, et al., Adv. Func. Mater. 22 (2012) 1385–1390. doi: 10.1002/adfm.201102111
-
[9]
Z.H. Zheng, S. Cong, W.B. Gong, et al., Nat. Commun. 8 (2017) 1993. doi: 10.1038/s41467-017-02166-z
-
[10]
Samriti, Prateek, M.C. Joshi, R.K. Gupta, J. Prakash, Mater. Chem. Phys. 278 (2022) 125642. doi: 10.1016/j.matchemphys.2021.125642
-
[11]
Samriti, V. Rajput, R.K. Gupta, J. Prakash, J. Mater. Chem. C10 (2021) 73–95. doi: 10.1039/D1TC04886D
-
[12]
I. Alessandri, J. Am. Chem. Soc. 135 (2013) 5541–5544. doi: 10.1021/ja401666p
-
[13]
J.R. Lombardi, R.L. Birke, J. Phy. Chem. C118 (2014) 11120–11130. doi: 10.1021/jp5020675
-
[14]
S. Cong, Y.Y. Yuan, Z.G. Chen, et al., Nat. Commun. 6 (2015) 7800. doi: 10.1038/ncomms8800
-
[15]
G. Song, W.B. Gong, S. Cong, Z.G. Zhao, Angew. Chem. Int. Ed. 60 (2021) 5505–5511. doi: 10.1002/anie.202015306
-
[16]
X.T. Wang, W.X. Shi, S.X. Wang, et al., J. Am. Chem. Soc. 141 (2019) 5856–5862. doi: 10.1021/jacs.9b00029
-
[17]
L.B. Yang, Y. Zhang, W.D. Ruan, et al., J. Raman Spectrosc. 41 (2010) 721–726. doi: 10.1002/jrs.2511
-
[18]
L.B. Yang, X.Y. Qin, M.D. Gong, et al., Spectrochim. Acta A123 (2014) 224–229. doi: 10.1016/j.saa.2013.12.087
-
[19]
L.B. Yang, Q.Q. Sang, J. Du, et al., Phys. Chem. Chem. Phys. 20 (2018) 15149–15157. doi: 10.1039/C8CP01680A
-
[20]
J. Li, H.Z. Zhang, D.X. Yu, et al., Spectrochim. Acta A281 (2022) 121643. doi: 10.1016/j.saa.2022.121643
-
[21]
Z. Huang, Ariando, X.R. Wang, et al., Adv. Mater. 30 (2018) 1802439. doi: 10.1002/adma.201802439
-
[22]
J. Wu, P. Huang, H.T. Fan, G. Wang, W.S. Liu, ACS Appl. Mater. Inter. 12 (2020) 30304–30312. doi: 10.1021/acsami.0c03929
-
[23]
H. Du, Y.N. Liu, C.C. Shen, A.W. Xu, Chin. J. Catal. 38 (2017) 1295–1306. doi: 10.1016/S1872-2067(17)62866-3
-
[24]
L. Pan, S.B. Wang, J.W. Xie, Nano Energy28 (2016) 296–303. doi: 10.1016/j.nanoen.2016.08.054
-
[25]
D.N. Joshi, R.A. Prasath, Mater. Today: Proc. 3 (2016) 2413–2421. doi: 10.1016/j.matpr.2016.04.156
-
[26]
L. Yang, X. Li, Z.R. Wang, Y. Shen, M. Liu, Appl. Surf. Sci. 420 (2017) 346–354. doi: 10.1016/j.apsusc.2017.05.168
-
[27]
M.S. Aguilar, R. Esparza, G.J. Rosas, Solid State Chem. 277 (2019) 46–53. doi: 10.1016/j.jssc.2019.05.034
-
[28]
R. Lopez, R. Gomez, M.E. Llanos, Catal. Today148 (2009) 103–108. doi: 10.1016/j.cattod.2009.04.001
-
[29]
J. Bandara, C.P.K. Udawatta, C.S.K. Rajapakse, Photochem. Photobiol Sci. 4 (2005) 857. doi: 10.1039/b507816d
-
[30]
S.J.A. Moniz, J.W. Tang, ChemCatChem7 (2015) 1659–1667. doi: 10.1002/cctc.201500315
-
[31]
L. Guo, Z. Mao, C. Ma, et al., Appl. Nano Mater. 4 (2021) 381–388. doi: 10.1021/acsanm.0c02729
-
[32]
J.J. Liu, B. Cheng, J.G. Yu, Phys. Chem. Chem. Phys. 18 (2016) 115904.
-
[33]
X.Y. Pan, M.Q. Yang, X.Z. Fu, N. Zhang, Y.J. Xu, Nanoscale5 (2013) 3601–3614. doi: 10.1039/c3nr00476g
-
[34]
J.W. Cui, G.H. Wang, W. Liu, et al., Fuel290 (2021) 120066. doi: 10.1016/j.fuel.2020.120066
-
[35]
J.H. Ran, H.B. Chen, X. Bai, et al., Appl. Surf. Sci. 493 (2019) 1167–1176. doi: 10.1016/j.apsusc.2019.07.137
-
[36]
L.B. Yang, X. Jiang, W.D. Ruan, et al., J. Phys. Chem. C112 (2008) 20095–20098. doi: 10.1021/jp8074145
-
[37]
J.R. Lombardi, R.L. Birke, Acc. Chem. Res. 42 (2009) 734–742. doi: 10.1021/ar800249y
-
[38]
Y.L. Tian, B.B. Chang, J. Fu, et al., J. Solid State Chem. 212 (2014) 1–6. doi: 10.1016/j.jssc.2014.01.011
-
[39]
S. Yin, J. Di, M. Li, et al., J. Mater. Sci. 51 (2016) 4769–4777. doi: 10.1007/s10853-016-9746-5
-
[40]
G.G. Liu, G.X. Zhao, W. Zhou, et al., Adv. Funct. Mater. 26 (2016) 6822–6829. doi: 10.1002/adfm.201602779
-
[41]
D.L. Jiang, L.L. Chen, J.J. Zhu, et al., Dalton Trans. 42 (2013) 15726. doi: 10.1039/c3dt52008k
-
[42]
X.J. Zhang, L. Wang, Q.C. Du, et al., J. Colloid Interface Sci. 464 (2016) 89–95. doi: 10.1016/j.jcis.2015.11.022
-
[1]
-
-
-
[1]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
-
[2]
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884
-
[3]
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
-
[4]
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
-
[5]
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
-
[6]
Xing Xiao , Yunling Jia , Wanyu Hong , Yuqing He , Yanjun Wang , Lizhi Zhao , Huiqin An , Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474
-
[7]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[8]
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
-
[9]
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
-
[10]
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
-
[11]
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
-
[12]
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
-
[13]
Zhe Li , Ping-Zhao Liang , Li Xu , Fei-Yu Yang , Tian-Bing Ren , Lin Yuan , Xia Yin , Xiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190
-
[14]
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
-
[15]
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
-
[16]
Yulin Mao , Jingyu Ma , Jiecheng Ji , Yuliang Wang , Wanhua Wu , Cheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927
-
[17]
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
-
[18]
Xiao Yu , Dongyue Cui , Mengmeng Wang , Zhaojin Wang , Mengzhu Wang , Deshuang Tu , Vladimir Bregadze , Changsheng Lu , Qiang Zhao , Runfeng Chen , Hong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520
-
[19]
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
-
[20]
Shengdong Sun , Cheng Wang , Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398
-
[1]
Metrics
- PDF Downloads(14)
- Abstract views(965)
- HTML views(88)