Highly efficient electrocatalytic deuteration of acetylene to deuterated ethylene using deuterium oxide
-
* Corresponding author.
E-mail address: zhangjian@nwpu.edu.cn (J. Zhang).
Citation:
Siyu Chang, Jun Bu, Jinjin Li, Jin Lin, Zhenpeng Liu, Wenxiu Ma, Jian Zhang. Highly efficient electrocatalytic deuteration of acetylene to deuterated ethylene using deuterium oxide[J]. Chinese Chemical Letters,
;2023, 34(5): 107765.
doi:
10.1016/j.cclet.2022.107765
K.K. Irikura, J. Phys. Chem. Ref. Data 36 (2007) 389–397.
doi: 10.1063/1.2436891
B. Belleau, J. Burba, Science 133 (1961) 102–104.
doi: 10.1126/science.133.3446.102
R. Lowery, M.I. Gibson, R.L. Thompson, et al., Chem. Commun. 51 (2015) 4838–4841.
doi: 10.1039/C4CC09588J
E.M. Simmons, J.F. Hartwig, Angew. Chem. Int. Ed. 51 (2012) 3066–3072.
doi: 10.1002/anie.201107334
M. Liu, Y. Zheng, Q. Chen, et al., J. Nucl. Mater. 535 (2020) 152–159.
T.R. Puleo, A.J. Strong, J.S. Bandar, J. Am. Chem. Soc. 141 (2019) 1467–1472.
doi: 10.1021/jacs.8b12874
A. Di Giuseppe, R. Castarlenas, J.J. Perez-Torrente, et al., Angew. Chem. Int. Ed. 50 (2011) 3938–3942.
doi: 10.1002/anie.201007238
S.K.S. Tse, P. Xue, Z. Lin, et al., Adv. Synth. Catal. 352 (2010) 1512–1522.
doi: 10.1002/adsc.201000037
E. Shirakawa, H. Otsuka, T. Hayashi, Chem. Commun. 37 (2005) 5885–5886.
G. Erdogan, D.B. Grotjahn, J. Am. Chem. Soc. 131 (2009) 10354–10355.
doi: 10.1021/ja903519a
J. Atzrodt, V. Derdau, W.J. Kerr, et al., Angew. Chem. Int. Ed. 57 (2018) 3022–3047.
doi: 10.1002/anie.201708903
M. Tinga, G. Schat, O.S. Akkerman, et al., J. Am. Chem. Soc. 115 (1993) 2808–2817.
doi: 10.1021/ja00060a030
K. Harada, H. Urabe, F. Sato, Tetrahedron Lett. 36 (1995) 3203–3206.
doi: 10.1016/0040-4039(95)00513-C
J.C.T.E.M. Richards, R.S. Ward, D.H. Williams, J. Chem. Soc. 11 (1969) 1542–1544.
Y. Yabe, Y. Sawama, Y. Monguchi, et al., Chem. Eur. J. 19 (2013) 484–488.
doi: 10.1002/chem.201203337
Y. Wang, Z. Huang, X. Leng, et al., J. Am. Chem. Soc. 140 (2018) 4417–4429.
doi: 10.1021/jacs.8b01038
M. Han, Y. Ding, Y. Yan, et al., Org. Lett. 20 (2018) 3010–3013.
doi: 10.1021/acs.orglett.8b01036
Y. Kataoka, K. Takai, K. Oshima, et al., J. Org. Chem. 57 (1992) 1615–1618.
doi: 10.1021/jo00031a057
Y. Wu, C. Liu, C. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 21170–21175.
doi: 10.1002/anie.202009757
A. Kurimoto, R.S. Sherbo, Y. Cao, et al., Nat. Catal. 3 (2020) 719–726.
doi: 10.1038/s41929-020-0488-z
J. Bu, Z. Liu, W. Ma, et al., Nat. Catal. 4 (2021) 557–564.
doi: 10.1038/s41929-021-00641-x
L. Zhang, Z. Chen, Z. Liu, et al., Nat. Commun. 12 (2021) 6574.
doi: 10.1038/s41467-021-26853-0
Z. Lu, W. Xu, W. Zhu, et al., Chem. Commun. 50 (2014) 6479–6482.
doi: 10.1039/C4CC01625D
Z. -S. Cai, Y. Shi, S. -S. Bao, et al., ACS Catal. 8 (2018) 3895–3902.
doi: 10.1021/acscatal.7b04276
J. Moon, Y. Cheng, L.L. Daemen, et al., ACS Catal. 10 (2020) 5278–5287.
doi: 10.1021/acscatal.0c00808
A.V. Ivanov, A.E. Koklin, E.B. Uvarova, et al., Phy. Chem. Chem. Phys. 5 (2003) 4718–4723.
doi: 10.1039/b307138c
J.D. Krooswyk, I. Waluyo, M. Trenary, ACS Catal. 5 (2015) 4725–4733.
doi: 10.1021/acscatal.5b00942
R. Deng, J. Jones, M. Trenary, J. Phy. Chem. C 111 (2007) 1459–1466.
doi: 10.1021/jp065710r
L. Letendre, D.K. Liu, C.D. Pibel, et al., J. Chem. Phys. 112 (2000) 9209–9212.
doi: 10.1063/1.481542
B.L. Crawford, J.E. Lancaster, R.G. Inskeep, J. Chem. Phys. 21 (1953) 678–686.
doi: 10.1063/1.1698989
W.L. Parker, A.R. Siedle, R.M. Hexter, J. Am. Chem. Soc. 107 (1985) 264–266.
doi: 10.1021/ja00287a055
K. Manzel, W. Schulze, M. Moskovits, Chem. Phy. Lett. 85 (1982) 183–186.
doi: 10.1016/0009-2614(82)80328-X
M.L. Patterson, M.J. Weaver, J. Phys. Chem. 89 (1985) 5046–5051.
doi: 10.1021/j100269a032
M.F. Mrozek, M.J. Weaver, J. Phys. Chem. B 105 (2001) 8931–8937.
M. de Hemptinne, J. Jungers, J. Delfrosse, Nature 140 (1937) 323–324.
doi: 10.1038/140323a0
C.M. M de Hemptinne, Proc. Indian Acad. Sci. 9 (1939) 286–302.
doi: 10.1007/BF03046468
Chunyang Hu , Fangming Chen , Guo-Ping Lu , Wen-Bin Yi . Deuterated N-difluoromethylthiophthalimide: A stable, scalable reagent for radical and electrophilic deuteriodifluoromethylthiolations. Chinese Chemical Letters, 2022, 33(9): 4293-4297. doi: 10.1016/j.cclet.2022.01.013
Shou-Bing Yi , Hong-Fei Gao , Quan Li , Ya-Fei Ye , Na Wu , Xiao-Hong Cheng . Synthesis and self-assembly behavior of 2,5-diphenylethynyl thiophene based bolaamphiphiles. Chinese Chemical Letters, 2015, 26(7): 872-876. doi: 10.1016/j.cclet.2015.05.031
Mohammad Mazloum-Ardakani , Mahboobe Abolhasani , Bibi-Fatemeh Mirjalili , Mohammad Ali Sheikh-Mohseni , Afsaneh Dehghani-Firouzabadi , Alireza Khoshroo . Electrocatalysis of dopamine in the presence of uric acid and folic acid on modified carbon nanotube paste electrode. Chinese Journal of Catalysis, 2014, 35(2): 201-209. doi: 10.1016/S1872-2067(12)60734-7
He-Sheng Zhai , Lei Cao , Xing-Hua Xia . Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chinese Chemical Letters, 2013, 24(2): 103-106.
Yuan Zhen Zhou , Hui Wang , She Ying Dong , An Xiang Tian , Zhi Xian He , Bin Chen . Direct electrochemistry and electrocatalysis of myoglobin in dodecyltrimethylammonium bromide film modified carbon ceramic electrode. Chinese Chemical Letters, 2011, 22(4): 465-468. doi: 10.1016/j.cclet.2010.11.012
Bei-Dou Liang , Tong Jin , Le-Ping Miao , Chao-Yang Chai , Chang-Chun Fan , Xiang-Bin Han , Wen Zhang . Deuteration triggered downward shift of dielectric phase transition temperature in a hydrogen-bonded molecular crystal. Chinese Chemical Letters, 2022, 33(3): 1422-1424. doi: 10.1016/j.cclet.2021.08.032
Ming Hua ZHOU , Zu Cheng WU , Da Hui WANG . A Novel Electrocatalysis Method for Organic Pollutants Degradation. Chinese Chemical Letters, 2001, 12(10): 929-932.
Hongyan Fang , Jingjing Jiang , Dingsheng Wang , Xiangwen Liu , Dunru Zhu , Yadong Li . Catalyst Design for Acetylene Semi-Hydrogenation. Acta Physico-Chimica Sinica, 2023, 39(10): 2305030-0. doi: 10.3866/PKU.WHXB202305030
Alduhaish Osamah , Li Bin , Arman Hadi , Lin Rui-Biao , Zhao John Cong-Gui , Chen Banglin . A two-dimensional microporous metal-organic framework for highly selective adsorption of carbon dioxide and acetylene. Chinese Chemical Letters, 2017, 28(8): 1653-1658. doi: 10.1016/j.cclet.2017.04.025
Di Xiao-Xia , Zhao Jia , Yu Yi , Xu Xiao-Long , Gu Shan-Chuan , He Hai-Hua , Zhang Tong-Tong , Li Xiao-Nian . One-pot synthesis of nitrogen and sulfur co-doped activated carbon supported AuCl3 as efficient catalysts for acetylene hydrochlorination. Chinese Chemical Letters, 2016, 27(9): 1567-1571. doi: 10.1016/j.cclet.2016.03.004
Tianran Wei , Shusheng Zhang , Qian Liu , Yuan Qiu , Jun Luo , Xijun Liu . Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene. Acta Physico-Chimica Sinica, 2023, 39(2): 2207026-0. doi: 10.3866/PKU.WHXB202207026
Mohammad Mazloum-Ardakani , Fariba Sabaghian , Alireza Khoshroo , Hossein Naeimi . Simultaneous determination of the concentrations of isoproterenol, uric acid, and folic acid in solution using a novel nanostructure-based electrochemical sensor. Chinese Journal of Catalysis, 2014, 35(4): 565-572. doi: 10.1016/S1872-2067(14)60027-9
Andrzej Jablonski , Adam Lewera . Improving the efficiency of a direct ethanol fuel cell by a periodic load change. Chinese Journal of Catalysis, 2015, 36(4): 496-501. doi: 10.1016/S1872-2067(14)60226-6
David Sebastián , Vincenzo Baglio , Shuhui Sun , Ana C. Tavares , Antonino S. Aricò . Facile synthesis of Zr- and Ta-based catalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2015, 36(4): 484-489. doi: 10.1016/S1872-2067(14)60253-9
Hadi BEITOLLAHI , Alireza MOHADESI , Farzaneh GHORBANI , Hassan KARIMI MALEH , Mehdi BAGHAYERI , Rahman HOSSEINZADEH . Electrocatalytic measurement of methionine concentration with a carbon nanotube paste electrode modified with benzoylferrocene. Chinese Journal of Catalysis, 2013, 34(7): 1333-1338. doi: 10.1016/S1872-2067(12)60582-8
Hadi BEITOLLAHI , Somayeh MOHAMMADI . Voltammetric determination of ascorbic acid in the presence of acetaminophen and tryptophan using an improved carbon nanotube paste electrode. Chinese Journal of Catalysis, 2013, 34(6): 1098-1104. doi: 10.1016/S1872-2067(12)60544-0
Shi Chao Xu , Bing Cheng Hu , Wei You Zhou , Cheng Guo Sun , Zu Liang Liu . The synthesis, self-assembly and electrocatalytic property of a novel disulphide derivatised cobalt(Ⅱ) deuteroporphyrin. Chinese Chemical Letters, 2012, 23(2): 157-160. doi: 10.1016/j.cclet.2011.11.011
Mohammad Mazloum-Ardakani , Zahra Taleat , Hadi Beitollahi , Hossein Naeimi . Electrocatalytic determination of epinephrine and uric acid using a novel hydroquinone modified carbon paste electrode. Chinese Chemical Letters, 2011, 22(6): 705-708. doi: 10.1016/j.cclet.2010.11.035
Wen Zhao , Xia Qin Wu , Zhong Qing Lu , Wen Jing Hou , He Xing Li . Electrochemical studies of chloroperoxidase on poly-L-lysine film modified GC electrode. Chinese Chemical Letters, 2010, 21(1): 93-96. doi: 10.1016/j.cclet.2009.09.010
Yong Jun Ma , Yu Ying Pan , Wei Feng Wang , Mei Xia Yang , Min Zhou . Electrocatalytic oxidation of methanol at platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes. Chinese Chemical Letters, 2010, 21(3): 337-340. doi: 10.1016/j.cclet.2009.11.048