Citation: Xiaodie Li, Meiru Hou, Yu Fu, Lingli Wang, Yifan Wang, Dagang Lin, Qingchao Li, Dongdong Hu, Zhaohui Wang. A chronological review of photochemical reactions of ferrioxalate at the molecular level: New insights into an old story[J]. Chinese Chemical Letters, ;2023, 34(5): 107752. doi: 10.1016/j.cclet.2022.107752 shu

A chronological review of photochemical reactions of ferrioxalate at the molecular level: New insights into an old story

    * Corresponding author at: Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
    E-mail address: zhwang@des.ecnu.edu.cn (Z. Wang).
  • Received Date: 22 April 2022
    Revised Date: 5 July 2022
    Accepted Date: 16 August 2022
    Available Online: 18 August 2022

Figures(4)

  • Owing to its outstanding photoactivity, ferrioxalate is originally used as an actinometer and subsequent work has discovered that photochemistry of ferrioxalate is also fundamentally or technically important in atmospheric chemistry and water treatment. While the overall products generated from photolysis of ferrioxalate are known to include Fe(Ⅱ), a series of oxidizing (e.g., OH, O2•−/HO2•−) or reducing (C2O4•−/CO2•−) radicals and H2O2, however, at the molecular level, the primary step of the photoreaction of ferrioxalate remains as an unsolved mystery due to the difficulty in examining such ultrafast processes. Benefiting from the development of time-resolved spectroscopy, this old question has been studied with increasing vigor recently, by means of such ever-more-sophisticated techniques (e.g., flash photolysis, time-resolved X-ray absorption spectroscopy (XAS), femtosecond infrared (IR) absorption spectroscopy, ultrafast photoelectron spectroscopy (PES)). There are two contrary views on the primary reaction mechanism: (1) Intramolecular electron transfer (ET) precedes the cleavage of the metal-ligand bond; (2) The dissociation of C–C or Fe–O bond occurs before intramolecular ET. Thus, this review presents a comprehensive summary about the overall reaction mechanism and molecular level mechanism of ferrioxalates. In chronological order, we have elaborated two predominant but controversial views from the perspectives of different experimental approaches. Some challenges and research opportunities in this active field are also briefly discussed.
  • 加载中
    1. [1]

      K. Kawamura, S. Steinberg, I. Kaplan, Int. J. Environ. Anal. Chem. 19 (1985) 175–188.  doi: 10.1080/03067318508077028

    2. [2]

      J. Calvert, A. Lazrus, G. Kok, et al., Nature 317 (1985) 27–35.  doi: 10.1038/317027a0

    3. [3]

      T. Fox, N. Comerford, Soil Sci. Soc. Am. J. 54 (1990) 1139–1144.  doi: 10.2136/sssaj1990.03615995005400040037x

    4. [4]

      Y. Zuo, J. Hoigne, Environ. Sci. Technol. 26 (1992) 1014–1022.  doi: 10.1021/es00029a022

    5. [5]

      K. Kawamura, S. Bikkina, Atmos. Res. 170 (2016) 140–160.  doi: 10.1016/j.atmosres.2015.11.018

    6. [6]

      J. Yu, X. Huang, J. Xu, M. Hu, Environ. Sci. Technol. 39 (2005) 128–33.  doi: 10.1021/es049559f

    7. [7]

      A.M. Carlton, B. Turpin, K. Altieri, et al., Atmos. Environ. 41 (2007) 7588–7602.  doi: 10.1016/j.atmosenv.2007.05.035

    8. [8]

      B. Laongsri, R.M. Harrison, Atmos. Environ. 71 (2013) 319–326.  doi: 10.1016/j.atmosenv.2013.02.015

    9. [9]

      T. Guo, K. Li, Y. Zhu, H. Gao, X. Yao, Atmos. Environ. 142 (2016) 19–31.  doi: 10.1016/j.atmosenv.2016.07.026

    10. [10]

      J. Meng, G. Wang, J. Li, et al., Sci. Total Environ. 493 (2014) 1088–1097.  doi: 10.1016/j.scitotenv.2014.04.086

    11. [11]

      H. Shen, X. Yan, M. Zhao, S. Zheng, X. Wang, Environ. Exp. Bot. 48 (2002) 1–9.  doi: 10.1016/S0098-8472(02)00009-6

    12. [12]

      T.A. Sokolova, Eurasian Soil Sci. 53 (2020) 580–594.  doi: 10.1134/s1064229320050154

    13. [13]

      B.W. Strobel, Geoderma. 99 (2001) 169–198.  doi: 10.1016/S0016-7061(00)00102-6

    14. [14]

      B. Faust, R. Zepp, Environ. Sci. Technol. 27 (1993) 2517–2522.  doi: 10.1021/es00048a032

    15. [15]

      A. Allmand, W. Webb, J. Chem. Soc. (Res. ) (1929) 1518–1531.

    16. [16]

      A. Allmand, W. Webb, J. Chem. Soc. (Res. ) (1929) 1531–1537.

    17. [17]

      A. Allmand, K. Young, J. Chem. Soc. (Res. ) (1931) 3079–3087.

    18. [18]

      C.A. Parker, P. Roy. Soc. A Math. Phys. Sci. 220 (1953) 104–116.

    19. [19]

      C.G. Hatchard, C.A. Parker, Phys. Eng. Sci. 235 (1956) 518–536.

    20. [20]

      C. Parker, C. Hatchard, J. Phys. Chem. 63 (1959) 22–26.  doi: 10.1021/j150571a009

    21. [21]

      Z. Wang, W. Song, W. Ma, J. Zhao, Prog. Chem. 24 (2012) 423–432.

    22. [22]

      H. Kuhn, S. Braslavsky, R. Schmidt, Pure Appl. Chem. 76 (2004) 2105–2146.  doi: 10.1351/pac200476122105

    23. [23]

      K. Aoki, Skin Res. 17 (1975) 29–33.

    24. [24]

      J. Chen, H. Zhang, I. Tomov, X. Ding, P. Rentzepis, Chem. Phys. Lett. 437 (2007) 50–55.  doi: 10.1016/j.cplett.2007.02.005

    25. [25]

      S. Straub, P. Brünker, J. Lindner, P. Vöhringer, EPJ Web Conf. 205 (2019) 05016.  doi: 10.1051/epjconf/201920505016

    26. [26]

      E. Fernández, J. Figuera, A. Tobar, J. Photochem. 11 (1979) 69–71.  doi: 10.1016/0047-2670(79)85008-X

    27. [27]

      S. Steinberg, K. Kawamura, I. Kaplan, Int. J. Environ. Anal. Chem. 19 (1985) 251–260.  doi: 10.1080/03067318508077036

    28. [28]

      F. Joos, U. Baltensperger, Atmos. Environ. A Gen. Top. 25 (1991) 217–230.  doi: 10.1016/0960-1686(91)90292-F

    29. [29]

      Y. Zuo, Photochemistry of iron(Ⅲ)/iron(Ⅱ) complexes in atmospheric liquid phases and its environmental significance. Ph. D. Dissertation, ETH, Zurich, 1992.

    30. [30]

      T. Kelly, P. Daum, S. Schwartz, J. Geophys. Res. Atmos. 90 (1985) 7861–7871.  doi: 10.1029/JD090iD05p07861

    31. [31]

      D. Gunz, M. Hoffmann, Atmos. Environ. Part A 24 (1990) 1601–1633.  doi: 10.1016/0960-1686(90)90496-A

    32. [32]

      C. Miles, P. Brezonik, Environ. Sci. Technol. 15 (1981) 1089–1095.  doi: 10.1021/es00091a010

    33. [33]

      R. Zepp, B. Faust, J. Hoigne, Environ. Sci. Technol. 26 (1992) 313–319.  doi: 10.1021/es00026a011

    34. [34]

      Z. Wang, C. Chen, W. Ma, J. Zhao, J. Phys. Chem. Lett. 3 (2012) 2044–2051.  doi: 10.1021/jz3005333

    35. [35]

      E. Harris, B. Sinha, P. Hoppe, et al., Atmos. Chem. Phys. 12 (2012) 407–423.  doi: 10.5194/acp-12-407-2012

    36. [36]

      B. Kocar, W. Inskeep, Environ. Sci. Technol. 37 (2003) 1581–1588.  doi: 10.1021/es020939f

    37. [37]

      S.J. Hug, H.U. Laubscher, B.R. James, Environ. Sci. Technol. 31 (1997) 160–170.  doi: 10.1021/es960253l

    38. [38]

      M. Lucas, J. Peres, Dyes Pigment. 74 (2007) 622–629.  doi: 10.1016/j.dyepig.2006.04.005

    39. [39]

      D. Prato-Garcia, R. Vasquez-Medrano, M. Hernandez-Esparza, Sol. Energy 83 (2009) 306–315.  doi: 10.1016/j.solener.2008.08.005

    40. [40]

      N. Klamerth, S. Malato, M.I. Maldonado, A. Agüera, A. Fernández-Alba, Catal. Today 161 (2011) 241–246.  doi: 10.1016/j.cattod.2010.10.074

    41. [41]

      D. Trigueros, A. Módenes, P. Souza, et al., J. Photochem. Photobiol. A 385 (2019) 112095.  doi: 10.1016/j.jphotochem.2019.112095

    42. [42]

      H. Bates, N. Uri, J. Am. Chem. Soc. 75 (1953) 2754–2759.  doi: 10.1021/ja01107a062

    43. [43]

      R. Larson, M. Schlauch, K.A. Marley, J. Agric. Food Chem. 39 (1991) 2057–2062.  doi: 10.1021/jf00011a035

    44. [44]

      P. Maruthamuthu, R.E. Huie, Chemosphere 30 (1995) 2199–2207.  doi: 10.1016/0045-6535(95)00091-L

    45. [45]

      E.G. Solozhenko, N.M. Soboleva, V.V. Goncharuk, Water Res. 29 (1995) 2206–2210.  doi: 10.1016/0043-1354(95)00042-J

    46. [46]

      Z.M. Li, P.J. Shea, S.D. Comfort, Chemosphere 36 (1998) 1849–1865.  doi: 10.1016/S0045-6535(97)10073-X

    47. [47]

      L.O. Conte, A.V. Schenone, O.M. Alfano, Environ. Sci. Pollut. Res. Int. 24 (2017) 6205–6212.  doi: 10.1007/s11356-016-6400-3

    48. [48]

      A.J. Exposito, J.M. Monteagudo, A. Duran, I. San Martin, L. Gonzalez, J. Hazard. Mater. 342 (2018) 597–605.  doi: 10.1016/j.jhazmat.2017.08.069

    49. [49]

      A. Durán, J.M. Monteagudo, A. Carnicer, I. San Martín, P. Serna, Sol. Energy Mat. Sol. C 107 (2012) 307–315.  doi: 10.1016/j.solmat.2012.07.001

    50. [50]

      Q. Zeng, S. Chang, M. Wang, et al., Chin. Chem. Lett. 32 (2021) 2212–2216.  doi: 10.1016/j.cclet.2020.12.062

    51. [51]

      Q. Zeng, S. Chang, A. Beyhaqi, et al., Nano Energy. 67 (2020) 104237.  doi: 10.1016/j.nanoen.2019.104237

    52. [52]

      C. Parker, Trans. Faraday Soc. 50 (1954) 1213–1221.  doi: 10.1039/tf9545001213

    53. [53]

      B. DeGraff, G. Cooper, J. Phys. Chem. 75 (1971) 2897–2902.  doi: 10.1021/j100688a004

    54. [54]

      J. Patterson, S. Perone, J. Phys. Chem. 77 (1973) 2437–2440.  doi: 10.1021/j100639a015

    55. [55]

      V. Nadtochenko, J. Kiwi, J. Photochem. Photobiol. A 99 (1996) 145–153.  doi: 10.1016/S1010-6030(96)04377-8

    56. [56]

      I. Pozdnyakov, O. Kel, V. Plyusnin, V. Grivin, N. Bazhin, J. Phys. Chem. A 112 (2008) 8316–8322.  doi: 10.1021/jp8040583

    57. [57]

      I.P. Pozdnyakov, A.A. Melnikov, N. Tkachenko, et al., Dalton Trans. 43 (2014) 17590–17595.  doi: 10.1039/C4DT01419G

    58. [58]

      J. Chen, A. Dvornikov, P. Rentzepis, J. Phy. Chem. A 113 (2009) 8818–8819.  doi: 10.1021/jp809535q

    59. [59]

      J. Chen, W.R. Browne, Coord. Chem. Rev. 374 (2018) 15–35.  doi: 10.1016/j.ccr.2018.06.008

    60. [60]

      L. Longetti, T.R. Barillot, M. Puppin, et al., Phys. Chem. Chem. Phys. 23 (2021) 25308–25316.  doi: 10.1039/d1cp02872c

    61. [61]

      H. Zipin, S. Speiser, Chem. Phy. Lett. 31 (1975) 102–103.  doi: 10.1016/0009-2614(75)80067-4

    62. [62]

      J. Šima, J. Makáňová, Coord. Chem. Rev. 160 (1997) 161–189.  doi: 10.1016/S0010-8545(96)01321-5

    63. [63]

      C. Weller, S. Horn, H. Herrmann, J. Photochem. Photobiol. A 268 (2013) 24–36.  doi: 10.1016/j.jphotochem.2013.06.022

    64. [64]

      I. Pozdnyakov, F. Wu, A. Melnikov, et al., Russ. Chem. B 62 (2013) 1579–1585.  doi: 10.1007/s11172-013-0227-6

    65. [65]

      P. Borer, S. Hug, J. Colloid Interfaces Sci. 416 (2014) 44–53.  doi: 10.1016/j.jcis.2013.10.030

    66. [66]

      R. Jamieson, S. Perone, J. Phys. Chem. 76 (1972) 830–839.  doi: 10.1021/j100650a007

    67. [67]

      P. Kennepohl, E. Solomon, Inorg. Chem. 42 (2003) 696–708.  doi: 10.1021/ic0203320

    68. [68]

      J. Chen, H. Zhang, I. Tomov, et al., J. Phys. Chem. A 111 (2007) 9326–9335.  doi: 10.1021/jp0733466

    69. [69]

      J. Chen, H. Zhang, I. Tomov, P. Rentzepis, Inorg. Chem. 47 (2008) 2024–2032.  doi: 10.1021/ic7016566

    70. [70]

      C. Brady, J. McGarvey, J. McCusker, et al., Time-resolved relaxation studies of spin crossover systems in solution. In: Spin crossover in transition metal compounds III, Top. Curr. Chem., 235, Springer, Berlin, Heidelberg, 2004, pp. 1–22.

    71. [71]

      M. Khalil, M.A. Marcus, A.L. Smeigh, et al., J. Phys. Chem. A 110 (2006) 38–44.  doi: 10.1021/jp055002q

    72. [72]

      R.K. Pandey, S. Mukamel, J. Phys. Chem. A 111 (2007) 805–816.  doi: 10.1021/jp0627022

    73. [73]

      P. R G. Porter. Soc. A Math. Phys. Sci. 200 (1950) 284–300.

    74. [74]

      R.G.W.N.G. Porter, Proc. R. Soc. A Math. Phys. Sci. 210 (1952) 439–460.

    75. [75]

      P. Rentzepis, R.P. Jones, J. Jortner, Chem. Phys. Lett. 15 (1972) 480–482.  doi: 10.1016/0009-2614(72)80353-1

    76. [76]

      F. Duke, J. Am. Chem. Soc. 69 (1947) 2885–2888.  doi: 10.1021/ja01203a073

    77. [77]

      J.I.H. Patterson, S.P. Perone, J. Phys. Chem. 77 (1973) 2437–2440.  doi: 10.1021/j100639a015

    78. [78]

      C. Bressler, M. Chergui, Chem. Rev. 104 (2004) 1781–1812.  doi: 10.1021/cr0206667

    79. [79]

      L. Chen, Annu. Rev. Phys. Chem. 56 (2005) 221–254.  doi: 10.1146/annurev.physchem.56.092503.141310

    80. [80]

      G.D. Cooper, B.A. DeGraff, J. Phys. Chem. 76 (1972) 2618–2625.  doi: 10.1021/j100662a027

    81. [81]

      I. Pozdnyakov, O. Kel, V. Plyusnin, V. Grivin, N. Bazhin, J. Phys. Chem. A 113 (2009) 8820–8822.  doi: 10.1021/jp810301g

    82. [82]

      Y. Ogi, Y. Obara, T. Katayama, et al., Struct. Dyn. 2 (2015) 034901.  doi: 10.1063/1.4918803

    83. [83]

      S. Goldstein, J. Rabani, J. Photochem. Photobiol. A 193 (2008) 50–55.  doi: 10.1016/j.jphotochem.2007.06.006

    84. [84]

      C. Weller, S. Horn, H. Herrmann, J. Photochem. Photobiol. A 255 (2013) 41–49.  doi: 10.1016/j.jphotochem.2013.01.014

    85. [85]

      G.C. O'Neil, L. Miaja-Avila, Y.I. Joe, et al., J. Phys. Chem. Lett. 8 (2017) 1099–1104.  doi: 10.1021/acs.jpclett.7b00078

    86. [86]

      M. Kubin, M. Guo, T. Kroll, et al., Chem. Sci. 9 (2018) 6813–6829.  doi: 10.1039/c8sc00550h

    87. [87]

      C. Bressler, R. Abela, M. Chergui, Z. Krist. Cryst. Mater. 223 (2008) 307–321.  doi: 10.1524/zkri.2008.0030

    88. [88]

      P. Vohringer, Dalton Trans. 49 (2020) 256–266.  doi: 10.1039/c9dt04165f

    89. [89]

      H. Graener, A. Laubereau, Opt. Commun. 54 (1985) 141–146.  doi: 10.1016/0030-4018(85)90279-2

    90. [90]

      D.M. Mangiante, R.D. Schaller, P. Zarzycki, J.F. Banfield, B. Gilbert, ACS Earth Space Chem. 1 (2017) 270–276.  doi: 10.1021/acsearthspacechem.7b00026

    91. [91]

      S. Straub, P. Brunker, J. Lindner, P. Vohringer, Phys. Chem. Chem. Phys. 20 (2018) 21390–21403.  doi: 10.1039/C8CP03824D

    92. [92]

      S. Straub, P. Brunker, J. Lindner, P. Vohringer, Angew. Chem. 130 (2018) 5094–5099.  doi: 10.1002/ange.201800672

    93. [93]

      F.H. Pilz, J. Lindner, P. Vohringer, Phys. Chem. Chem. Phys. 21 (2019) 23803–23807.  doi: 10.1039/c9cp05233j

    94. [94]

      S. Straub, P. Brünker, J. Lindner, P. Vöhringer, EPJ Web of Conferences 205 (2009) 0516.

    95. [95]

      O. Link, E. Lugovoy, K. Siefermann, et al., Appl. Phys. A 96 (2009) 117–135.  doi: 10.1007/s00339-009-5179-1

    96. [96]

      F. Buchner, A. Lübcke, N. Heine, T. Schultz, Rev. Sci. Instrum. 81 (2010) 113107.  doi: 10.1063/1.3499240

    97. [97]

      H. Okuyama, Y.I. Suzuki, S. Karashima, T. Suzuki, J. Chem. Phys. 145 (2016) 074502.  doi: 10.1063/1.4960385

    98. [98]

      A. Moguilevski, M. Wilke, G. Grell, et al., ChemPhysChem. 18 (2017) 465–469.  doi: 10.1002/cphc.201601396

    99. [99]

      M. Borgwardt, M. Wilke, I. Kiyan, E. Aziz, Phys. Chem. Chem. Phys. 18 (2016) 28893–28900.  doi: 10.1039/C6CP05655E

    100. [100]

      J. Ojeda, C. Arrell, L. Longetti, M. Chergui, J. Helbing, Phys. Chem. Chem. Phys. 19 (2017) 17052–17062.  doi: 10.1039/C7CP03337K

    101. [101]

      M. Chergui, J. Chem. Phys. 150 (2019) 070901.  doi: 10.1063/1.5082644

  • 加载中
    1. [1]

      Xiao Sun Bao Zhang Lian He Hui Qi Hou Ren Xi Zhang . Photolysis of H2S with interior microwave discharge electrodeless lamps. Chinese Chemical Letters, 2010, 21(8): 968-972. doi: 10.1016/j.cclet.2010.03.010

    2. [2]

      Zhi Ping Zhang Yi Ming Li Xiao Yun Chen Qing Xiang Guo . Photoregulation of protein plasmid expression in vitro and in vivo using BHQ caging group. Chinese Chemical Letters, 2011, 22(3): 338-341. doi: 10.1016/j.cclet.2010.10.007

    3. [3]

      Mei SHI Xiang Hong LI Fu You LI Deng Qing ZHANG Bing Bing DAI Tao YI Chun Hui HUANG . Time-resolved Luminescence-based Chemosensor for Fluoride Anion. Chinese Chemical Letters, 2006, 17(1): 69-72.

    4. [4]

      Wen LI Chen Ho TUNG Jian Ping YE . The Transient Time-Resolved Absorption Spectra of 1-Naphthylacetic Acid. Chinese Chemical Letters, 2000, 11(3): 261-262.

    5. [5]

      Jia YingShi YingWang PengZhang Jian-Ping . Triplet excitation dynamics of β-carotene studied in three solvents by ns flash photolysis spectroscopy. Chinese Chemical Letters, 2017, 28(1): 83-88. doi: 10.1016/j.cclet.2016.05.032

    6. [6]

      Caidie QinJuanjuan TangRuxia QiaoSijie Lin . Tetracycline sensitizes TiO2 for visible light photocatalytic degradation via ligand-to-metal charge transfer. Chinese Chemical Letters, 2022, 33(12): 5218-5222. doi: 10.1016/j.cclet.2022.01.067

    7. [7]

      Shuai ShenYushuai JiaFengtao FanZhaochi FengCan Li . Time-resolved infrared spectroscopic investigation of roles of valence states of Cr in (La, Cr)-doped SrTiO3 photocatalysts. Chinese Journal of Catalysis, 2013, 34(11): 2036-2040. doi: 10.1016/S1872-2067(12)60702-5

    8. [8]

      DING Zhong-HuaQIU Xue-JunXU Yan-QiWANG Yan-MeiZHANG Bing . Ultrafast Internal Conversion Dynamics of Benzyl Chloride by Femtosecond Time-Resolved Photoelectron Imaging. Acta Physico-Chimica Sinica, 2012, 28(12): 2761-2766. doi: 10.3866/PKU.WHXB201210124

    9. [9]

      ABULIMITI BumaliyaZHU Rong-ShuQIU Xue-JunQIN ChenZHANG Bing . Studies of Ultrafast Dynamics of 3-Picoline with Femtosecond Time-Resolved Photoelectron Imaging. Acta Physico-Chimica Sinica, 2014, 30(1): 22-27. doi: 10.3866/PKU.WHXB201311122

    10. [10]

      Fu Shao-WeiLuo Lai-BinChen Hui-LanWu Zong-SenZhang Shu-Yi . Photoacoustic Investigation of Photolysis of Coenzyme B12. Acta Physico-Chimica Sinica, 1997, 13(03): 193-195. doi: 10.3866/PKU.WHXB19970301

    11. [11]

      Wang Su-HuaChen De-Wen . The Study on the Photochemical Degradation of ρ-Substituted Sdium Phenylsulphonate. Acta Physico-Chimica Sinica, 1996, 12(04): 315-319. doi: 10.3866/PKU.WHXB19960406

    12. [12]

      HE Zhi-QiaoTONG Li-LiZHANG Zhi-PengCHEN Jian-MengSONG Shuang . Ag/Ag2WO4 Plasmonic Catalyst for Photocatalytic Reduction of CO2 under Visible Light. Acta Physico-Chimica Sinica, 2015, 31(12): 2341-2348. doi: 10.3866/PKU.WHXB201510151

    13. [13]

      Yuan LIN Xu Rui XIAO Wei Ying LI Xue Ping LI Wei Bo WANG Jing Yong CHENG . Time-resolved Microwave Conductivity Studies on the Chemical Treatment of the Nanocrystalline Porous TiO2Films. Chinese Chemical Letters, 2003, 14(7): 734-736.

    14. [14]

      Wu Hu LI Zhong Qun TIAN Jing Song GAO Qi XUE . IN-SITU TIME-RESOLVED RAMAN SPECTROSCOPIC STUDIES OF SILVER ELECTRODE IN NaSCN SOLUTION. Chinese Chemical Letters, 1993, 4(9): 829-830.

    15. [15]

      He Ping ZENG . Evaluation of Transient Absorption Spectra of N, N, N', N'-Tetra-(p-methylphenyl)-4, 4'-diamino-1, 1'-diphenyl Ether (TPDAE) for Electron Transfer from TPDAE to Fullerenes (C60/C70) by Laser Flash Photolysis. Chinese Chemical Letters, 2002, 13(12): 1231-1234.

    16. [16]

      Zhao Lian Ye Chang Qing Cao Jin Cong He Ren Xi Zhang Hui Qi Hou . Photolysis of organic pollutants in wastewater with 206 nm UV irradiation. Chinese Chemical Letters, 2009, 20(6): 706-710. doi: 10.1016/j.cclet.2008.12.033

    17. [17]

      Hui Hui ZENG Jian WANG Rong Chang LI Kui WANG . STUDY ON BINDING MODE OF CISPLATIN TO F-ACTIN ON THE BASIS OF LIGAND-METAL CHARGE TRANSFER SPECTRA. Chinese Chemical Letters, 1992, 3(1): 71-74.

    18. [18]

      Lin Pei JIN Ming Zhao WANG Rui Fen WANG Jian Xin CHEN Guang Zhi XU . TIME RESOLVED SPECTRA OF Eu(MBA)3 PHEN COMPLEXES. Chinese Chemical Letters, 1993, 4(2): 183-186.

    19. [19]

      Jie ZHANG De Jun WANG Tong Shun SHI Peng ZHANG Xi Zhang CAO Tie Jin LI . STUDIES OF SURFACE PHOTOVOLTAGE PROPERTIES AND CHARGE TRANSFER ON TRANSITION METAL PORPHYRIN COMPLEX (Ⅰ). Chinese Chemical Letters, 1995, 6(3): 251-254.

    20. [20]

      Wei Guo LI Xiao Qiang CUI Xiu Rong YANG Da Qing ZHAO Jia Zuan NI . Real-time Analysis of the Interaction between Calmodulin and Melittin by SPR Spectroscopy. Chinese Chemical Letters, 2002, 13(2): 165-166.

Metrics
  • PDF Downloads(5)
  • Abstract views(109)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return