Responsive switchable deep eutectic solvents: A review
-
* Corresponding authors.
E-mail addresses:
Citation:
Jingyu Zhang, Shang Li, Liping Yao, Yuexing Yi, Lingqi Shen, Zuguang Li, Hongdeng Qiu. Responsive switchable deep eutectic solvents: A review[J]. Chinese Chemical Letters,
;2023, 34(5): 107750.
doi:
10.1016/j.cclet.2022.107750
A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Commun. 1 (2003) 70-71.
A.P. Abbott, G. Capper, S. Gray, ChemPhysChem 7 (2006) 803-806.
doi: 10.1002/cphc.200500489
H. Zhang, J.M. Vicent-Luna, S.X. Tao, et al., ACS Sustain. Chem. Eng. 10 (2022) 1232-1245.
doi: 10.1021/acssuschemeng.1c06999
H.Y. Wang, B. Tan, J.J. Wang, Z.Y. Li, S.J. Zhang, Langmuir 30 (2014) 3971-3978.
doi: 10.1021/la500030k
A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, J. Am. Chem. Soc. 126 (2004) 9142-9147.
doi: 10.1021/ja048266j
L.F. Peng, Z.F. Hu, Q.C. Lu, et al., Chin. Chem. Lett. 30 (2019) 2151-2156.
doi: 10.1016/j.cclet.2019.05.063
B.B. Hansen, S. Spittle, B. Chen, et al., Chem. Rev. 121 (2021) 1232-1285.
doi: 10.1021/acs.chemrev.0c00385
M.A.R. Martins, S.P. Pinho, J.A.P. Coutinho, J. Solut. Chem. 48 (2019) 962-982.
doi: 10.1007/s10953-018-0793-1
C. Florindo, L.C. Branco, I.M. Marrucho, ChemSusChem 12 (2019) 1549-1559.
doi: 10.1002/cssc.201900147
J. Cao, M. Yang, F.L. Cao, J.H. Wang, E.Z. Su, J. Clean. Prod. 152 (2017) 399-405.
doi: 10.1016/j.jclepro.2017.03.140
X.F. Han, J. Chen, H.J. Zhang, Z. Li, H.D. Qiu, Sci. Sin. Chim. 48 (2018) 1548-1560.
doi: 10.1360/n032018-00192
H.M. Liu, P. Jin, F.C. Zhu, L. Nie, H.D. Qiu, Trends Anal. Chem. 134 (2021) 116132.
doi: 10.1016/j.trac.2020.116132
T. Tan, Z. Li, X.J. Mao, Y.Q. Wan, H.D. Qiu, Anal. Methods 8 (2016) 3511-3516.
doi: 10.1039/C6AY00053C
T. Gu, M. Zhang, T. Tan, et al., Chem. Commun. 50 (2014) 11749-11752.
doi: 10.1039/C4CC04661G
M. Liu, D. Cao, W.T. Bi, D.D.Y. Chen, ACS Sustain. Chem. Eng. 9 (2021) 12049-12057.
doi: 10.1021/acssuschemeng.1c05395
M.C. Ali, J. Chen, H. Zhang, et al., Talanta 203 (2019) 16-22.
doi: 10.1016/j.talanta.2019.05.012
L.X. Zhang, H. Yu, H.B. Yu, Z. Chen, L. Yang, Chin. Chem. Lett. 25 (2014) 1132-1136.
doi: 10.1016/j.cclet.2014.03.029
Q.S. Chen, L.X. Chai. H, X.P. Yao, et al., ACS Sustain. Chem. Eng. 9 (2021) 10083-10092.
doi: 10.1021/acssuschemeng.1c01848
D. Cao, Q. Liu, W.Q. Jing, et al., ACS Sustain. Chem. Eng. 8 (2020) 19169-19177.
doi: 10.1021/acssuschemeng.0c08146
T. Cai, H. Qiu, Trends Anal. Chem. 120 (2019) 115623-115632.
doi: 10.1016/j.trac.2019.115623
J. Chen, M.C. Ali, R. Liu, et al., Chin. Chem. Lett. 31 (2020) 1584-1587.
doi: 10.1016/j.cclet.2019.09.055
M.C. Ali, R. Liu, J. Chen, et al., Chin. Chem. Lett. 30 (2019) 871-874.
doi: 10.1016/j.cclet.2019.02.025
C. Florindo, L. Romero, I. Rintoul, L.C. Branco, I.M. Marrucho, ACS Sustain. Chem. Eng. 6 (2018) 3888-3895.
doi: 10.1021/acssuschemeng.7b04235
E.L. Smith, A.P. Abbott, K.S. Ryder, Chem. Rev. 114 (2014) 11060-11082.
doi: 10.1021/cr300162p
S.L. Perkins, P. Painter, C.M. Colina, J. Chem. Eng. Data 59 (2014) 3652-3662.
doi: 10.1021/je500520h
Y. Chen, F.X. Xu, M.M. Pang, et al., Sustain. Chem. Pharm. 27 (2022) 100695.
doi: 10.1016/j.scp.2022.100695
F.X. Xu, J.Y. Zhang, J. Jin, et al., J. Oleo Sci. 70 (2021) 1481-1494.
doi: 10.5650/jos.ess20368
Y.T. Dai, E. Rozema, R. Verpoorte, Y.H. Choi, J. Chromatogr. A 1434 (2016) 50-56.
doi: 10.1016/j.chroma.2016.01.037
M.C. Gutierrez, M.L. Ferrer, C.R. Mateo, F.D. Monte, Langmuir 25 (2009) 5509-5515.
doi: 10.1021/la900552b
D.Z. Xiong, G.K. Cui, J.J. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 7265-7269.
doi: 10.1002/anie.201500695
S.L. Desset, D.J. Cole-Hamilton, Angew. Chem. Int. Ed. 48 (2009) 1472-1474.
doi: 10.1002/anie.200804729
Q.X. Zhou, Y.Y. Gao, Chin. Chem. Lett. 25 (2014) 745-748.
doi: 10.1016/j.cclet.2014.01.026
K.K. Kow, K. Sirat, Chin. Chem. Lett. 26 (2015) 1311-1314.
doi: 10.1016/j.cclet.2015.05.049
M.R. Bhosle, L.D. Khillare, S.T. Dhumal, R.A. Mane, Chin. Chem. Lett. 27 (2016) 370-374.
doi: 10.1016/j.cclet.2015.12.005
T. Tan, X.M. Xu, Y.Q. Wan, Chin. Chem. Lett. 30 (2019) 1182-1185.
doi: 10.1016/j.cclet.2019.03.057
K.J. Xua, P.L. Xu, Y.Z. Wang, Talanta 213 (2020) 120839.
doi: 10.1016/j.talanta.2020.120839
W.Y. Tang, K.H. Row, J. Clean. Prod. 268 (2020) 122306.
doi: 10.1016/j.jclepro.2020.122306
P.G. Jessop, D.J. Heldebrant, X.W. Li, C.A. Eckert, C.L. Liotta, Nature 436 (2005) 1102.
doi: 10.1038/4361102a
G.L. Aragonés, R. Lucena, S. Cárdenas, M. Valcárcel, Talanta 131 (2015) 645-649.
doi: 10.1016/j.talanta.2014.08.031
J.R. Vanderveen, J. Durelle, P.G. Jessop, Green Chem. 16 (2014) 1187-1197.
doi: 10.1039/C3GC42164C
W.Y. Tang, K.H. Row, Bioresour. Technol. 296 (2020) 122309-122318.
doi: 10.1016/j.biortech.2019.122309
T. Yu, T. Yamada, G.C. Gaviola, R.G. Weiss, Chem. Mater. 20 (2008) 5337-5344.
doi: 10.1021/cm801169c
X.Y. Pei, D.Z. Xiong, Y.C. Pei, H.Y. Wang, J.J. Wang, Green Chem. 20 (2018) 4236-4244.
doi: 10.1039/c8gc00801a
J.D. Jimenez, S. Jung, E.J. Biddinger, J. Electrochem. Soc. 162 (2015) 460-465.
V.M. Blasucci, R. Hart, P. Pollet, C.L. Liotta, C.A. Eckert, Fulid Phase Equilib. 294 (2010) 1-6.
doi: 10.1016/j.fluid.2010.04.005
I. Anugwom, V. Eta, P. Virtanen, et al., ChemSusChem 7 (2014) 1170-1176.
doi: 10.1002/cssc.201300773
S.Z. Wang, Y.B. Li, X.F. Wen, et al., Ind. Crops Prod. 177 (2022) 114430.
doi: 10.1016/j.indcrop.2021.114430
M.R.A. Mogaddam, M.A. Farajzadeh, M. Tuzen, A. Jouyban, J. Khandaghi, Microchem. J. 168 (2021) 106433.
doi: 10.1016/j.microc.2021.106433
H. Li, C.X. Zhao, H. Tian, Y.L. Ling, W.Y. Li, Food Anal. Methods 12 (2019) 2777-2784.
doi: 10.1007/s12161-019-01639-9
C.Y. Cai, X.Y. Chen, F.F. Li, Z.J. Tan, Sep. Purif. Technol. 279 (2021) 119685.
doi: 10.1016/j.seppur.2021.119685
X.J. Li, L.T. Sun, X. Lv, et al., J. Environ. Chem. Eng. 9 (2021) 106280.
doi: 10.1016/j.jece.2021.106280
F.J. Liu, Z.M. Xue, X. Lan, Z.H. Liu, T.C. Mu, Chem. Commun. 57 (2021) 627-630.
doi: 10.1039/d0cc06963a
L. Zhong, C. Wang, G.H. Yang, et al., Bioresour. Technol. 343 (2022) 126022.
doi: 10.1016/j.biortech.2021.126022
R. Muniasamy, B.S. Balamurugan, D. Rajamahendran, S. Rathnasamy, Sci. Rep. 12 (2022) 903-917.
doi: 10.1038/s41598-022-04788-w
C. Lo, J. Semerel, C.V.D. Berg, R.H. Wijffels, M.H.M. Eppink, RSC Adv. 11 (2021) 8142-8149.
doi: 10.1039/d1ra00306b
Y. Lu, X.D. Wang, H.D. Gu, M. Gao, Microchem. J. 169 (2021) 106626.
doi: 10.1016/j.microc.2021.106626
A. Stupar, V. Seregelj, B.D. Ribeiro, et al., Ultrason. Sonochem. 76 (2021) 105638.
doi: 10.1016/j.ultsonch.2021.105638
D.O. Abranches, J.A.P. Coutinho, Curr. Opin. Green Sustain. Chem. 35 (2022) 100612.
doi: 10.1016/j.cogsc.2022.100612
H. Balaraman, R. Selvasembian, V. Rangarajan, S. Rathnasamy, ACS Sustain. Chem. Eng. 9 (2021) 11290-11313.
doi: 10.1021/acssuschemeng.1c03034
D.Z. Xiong, Q. Zhang, W.J. Ma, et al., Sep. Purif. Technol. 265 (2021) 118479.
doi: 10.1016/j.seppur.2021.118479
G. Sed, A. Cicci, P.G. Jessop, M. Bravi, RSC Adv. 8 (2018) 37092-37097.
doi: 10.1039/c8ra08536f
Y.X. Gu, Y.C. Hou, S.H. Ren, Y. Sun, W.Z. Wu, ACS Omega 5 (2020) 6809-6816.
doi: 10.1021/acsomega.0c00150
A. Pochivalov, K. Cherkashina, A. Shishov, A. Bulatov, J. Mol. Liq. 339 (2021) 116827.
doi: 10.1016/j.molliq.2021.116827
O. Longeras, A. Gautier, K.B. Busserilles, J.M. Andanson, ACS Sustain. Chem. Eng. 8 (2020) 12516-12520.
doi: 10.1021/acssuschemeng.0c03478
X. Li, T. Yuan, T. Zhao, X.M. Wu, Y.L. Yang, J. Chromatogr. Sci. 58 (2020) 880-886.
doi: 10.1093/chromsci/bmaa051
C.Y. Cai, Y.N. Wang, W. Yu, et al., J. Clean. Prod. 274 (2020) 123047.
doi: 10.1016/j.jclepro.2020.123047
M. Nazraz, Y. Yamini, A.M. Ramezani, Z. Dinmohammadpour, J. Chromatogr. A 1636 (2021) 461756.
doi: 10.1016/j.chroma.2020.461756
W.R. Wan, D.Z. Xiong, Q. Zhang, J.J. Wang, ACS Sustain. Chem. Eng. 7 (2019) 17882-17887.
doi: 10.1021/acssuschemeng.9b04430
Z.H. Shi, X.Y. Li, Y.H. Tian, et al., Anal. Methods 13 (2021) 4739-4746.
doi: 10.1039/d1ay01288f
A. Niroumandpassand, A. Javadi, M.R.A. Mogaddam, Anal. Methods 13 (2021) 1747-1756.
doi: 10.1039/d0ay02340j
L.Y. Jia, X. Huang, W.F. Zhao, H.H. Wang, X. Jing, Food Chem. 317 (2020) 126424.
doi: 10.1016/j.foodchem.2020.126424
W.W. Ma, K.H. Row, Microchem. J. 160 (2021) 105642.
doi: 10.1016/j.microc.2020.105642
H.B. Balaraman, G. Viswanathan, R. Muniasamy, T. Gayatri, S.K. Rathnasamy, Microchem. J. 175 (2022) 107118.
doi: 10.1016/j.microc.2021.107118
X.P. Wang, R.Q. Wang, X.Y. Pan, et al., J. Chromatogr. A 1666 (2022) 462858.
doi: 10.1016/j.chroma.2022.462858
D.Z. Yang, Y.D. Wang, J.B. Peng, C. Xun, Y.L. Yang, Ecotoxicol. Environ. Safe 178 (2019) 130-136.
doi: 10.1016/j.ecoenv.2019.04.021
X.L. Wang, Y.G. Lu, L.Y. Shi, D, Z, Yang, Y.L. Yang, Microchem. J. 159 (2020) 105332.
doi: 10.1016/j.microc.2020.105332
H.J. Jiang, X. Huang, H.Y. Xue, et al., Chirality34(2022) 1-9.
doi: 10.1002/chir.23321
P.G. Jessop, S.M. Mercera. D.J. Heldebrant, Energy Environ. Sci. 5 (2012) 7240-7253.
doi: 10.1039/c2ee02912j
Z. Li, L.L. Wang, C.P. Li, et al., ACS Sustain. Chem. Eng. 7 (2019) 10403-10414.
doi: 10.1021/acssuschemeng.9b00555
G. Cui, M. Lv, D.Z. Yang, Chem. Commun. 55 (2019) 1426-1429.
doi: 10.1039/c8cc10085c
K. Zhang, S.H. Ren, X. Yang, et al., Chem. Eng. J. 327 (2017) 128-134.
doi: 10.1016/j.cej.2017.06.081
F.O. Farias, H. Passos, J.A.P. Coutinho, M.R. Mafra, Ind. Eng. Chem. Res. 57 (2018) 16917-16924.
doi: 10.1021/acs.iecr.8b04256
A. Ejraei, S. Shirvani, M.A. Aroon, M.A. Khansary, S. Khalaj, Fluid Phase Equilib. 425 (2016) 465-484.
doi: 10.1016/j.fluid.2016.06.036
Y.R. Zhao, J.Y. Ma, X. Yu, M.H. Li, J. Hu, Chin. Chem. Lett. 32 (2021) 548-552.
doi: 10.1016/j.cclet.2020.03.057
J.J. Janke, W.F.D. Bennett, D.P. Tieleman, Langmuir 30 (2014) 10661-10667.
doi: 10.1021/la501962n
E. Durand, J. Lecomte, P. Villeneuve, Biochimie 120 (2016) 119-123.
doi: 10.1016/j.biochi.2015.09.019
H. Ghaedi, M. Zhao, M. Ayoub, et al., J. Chem. Thermodyn. 137 (2019) 108-118.
doi: 10.1016/j.jct.2018.12.014
F.S. Mjalli, G. Murshid, S. Al-Zakwani, A. Hayyan, Fluid Phase Equilib. 448 (2017) 30-40.
doi: 10.1016/j.fluid.2017.03.008
Y.T. Liu, Y.A. Chen, Y.J. Xing, Chin. Chem. Lett. 25 (2014) 104-106.
doi: 10.11728/cjss2014.01.104
E Yang, W.J. Zhang, S.X. Pei, et al., Sci. China Ser. B Chem. 36 (2006) 218-226.
T. Lever, P. Haines, J. Rouquerol, et al., Pure Appl. Chem. 86 (2014) 545-553.
doi: 10.1515/pac-2012-0609
H. Qi, L.Y. Jiang, Q. Jia, Chin. Chem. Lett. 32 (2021) 2629-2636.
doi: 10.1016/j.cclet.2021.01.037
H.Q. Li, Y.Z. Wang, X.Y. He, et al., Talanta 230 (2021) 122341.
doi: 10.1016/j.talanta.2021.122341
F.T. Xu, Y.Z. Wang, Z.W. Liu., et al., Anal. Chim. Acta 1137 (2020) 125-135.
doi: 10.1016/j.aca.2020.09.005
Z.M. Liu, X.H. Zang, W.H. Liu, C. Wang, Z. Zhang, Chin. Chem. Lett. 20 (2009) 213-216.
doi: 10.1016/j.cclet.2008.10.047
Y.C. Fan, Z.L. Hu, M.L. Chen, C.S. Tu, Y. Zhu, Chin. Chem. Lett. 19 (2008) 985-987.
doi: 10.1016/j.cclet.2008.05.024
Q.X. Zhou, G.H. Xie, L. Pang, Chin. Chem. Lett. 19 (2008) 89-91.
doi: 10.1016/j.cclet.2007.10.036
W.F. Zhang, X.X. Lin, H.F. Li, Z.H. Wang, J.M. Li, Chin. Chem. Lett. 25 (2014) 1225-1229.
doi: 10.1016/j.cclet.2014.04.014
H.B. Zhu, Y.C. Fan, Y.L. Qian, et al. Chin. Chem. Lett. 25 (2014) 465-468.
doi: 10.1016/j.cclet.2013.12.001
G.L. Aragonés, R. Lucena, S. Cárdenas, Molecules 25 (2020) 6053-6073.
doi: 10.3390/molecules25246053
C.X. Wu, Q.H. Wu, C. Wang, Z. Wang, Chin. Chem. Lett. 22 (2011) 473-476.
doi: 10.1016/j.cclet.2010.10.049
A.K. El-Deen, K. Shimizu, Molecules 26 (2021) 7406-7430.
doi: 10.3390/molecules26237406
E. Zahiri, J. Khandaghi, M.A. Farajzadeh, M.R.A. Mogaddam, J. Chromatogr. A 1627 (2020) 461390.
doi: 10.1016/j.chroma.2020.461390
M. Wang, J.Q. Wang, Y. Yi. Zhou, et al., ACS Sustain. Chem. Eng. 5 (2017) 6297-6303.
doi: 10.1021/acssuschemeng.7b01378
M. Wang, J.Q. Wang, Y. Zhang, et al., J. Chromatogr. A 1443 (2016) 262-266.
doi: 10.1016/j.chroma.2016.03.061
M. Wang, W.T. Bi, X.H. Huang, D.D.Y. Chen, J. Chromatogr. A 1449 (2016) 8-16.
doi: 10.1016/j.chroma.2016.04.044
Koon-Kee Kow , Kamaliah Sirat . Novel manganese(II)-based deep eutectic solvents: Synthesis and physical properties analysis. Chinese Chemical Letters, 2015, 26(10): 1311-1314. doi: 10.1016/j.cclet.2015.05.049
CHEN Wenjun , XUE Zhimin , WANG Jinfang , JIANG Jingyun , ZHAO Xinhui , MU Tiancheng . Investigation on the Thermal Stability of Deep Eutectic Solvents. Acta Physico-Chimica Sinica, 2018, 34(8): 904-911. doi: 10.3866/PKU.WHXB201712281
Huixian Han , Lan Chen , Jiancheng Zhao , Haitao Yu , Yang Wang , Helian Yan , Yingxiong Wang , Zhimin Xue , Tiancheng Mu . Biomass-based Acidic Deep Eutectic Solvents for Efficient Dissolution of Lignin: Towards Performance and Mechanism Elucidation. Acta Physico-Chimica Sinica, 2023, 39(7): 2212043-0. doi: 10.3866/PKU.WHXB202212043
Chand Ali Mohammad , Liu Ruirui , Chen Jia , Cai Tianpei , Zhang Haijuan , Li Zhan , Zhai Honglin , Qiu Hongdeng . New deep eutectic solvents composed of crown ether, hydroxide and polyethylene glycol for extraction of non-basic N-compounds. Chinese Chemical Letters, 2019, 30(4): 871-874. doi: 10.1016/j.cclet.2019.02.025
Chen Jia , Chand Ali Mohammad , Liu Ruirui , Claude Munyemana Jean , Li Zhan , Zhai Honglin , Qiu Hongdeng . Basic deep eutectic solvents as reactant, template and solvents for ultra-fast preparation of transition metal oxide nanomaterials. Chinese Chemical Letters, 2020, 31(6): 1584-1587. doi: 10.1016/j.cclet.2019.09.055
HOU Yucui , YAO Congfei , WU Weize . Deep Eutectic Solvents: Green Solvents for Separation Applications. Acta Physico-Chimica Sinica, 2018, 34(8): 873-885. doi: 10.3866/PKU.WHXB201802062
Yu-Ting Liu , Yan-An Chen , Yan-Jun Xing . Synthesis and characterization of novel ternary deep eutectic solvents. Chinese Chemical Letters, 2014, 25(1): 104-106.
Jia Chen , Ning Yuan , Danni Jiang , Qian Lei , Bei Liu , Weiyang Tang , Kyung Ho Row , Hongdeng Qiu . Octadecylamine and glucose-coderived hydrophobic carbon dots-modified porous silica for chromatographic separation. Chinese Chemical Letters, 2021, 32(11): 3398-3401. doi: 10.1016/j.cclet.2021.04.052
Xu Zhi , Zhang Shu , Gao Chuan , Fan Jing , Zhao Feng , Lv Zao-Sheng , Feng Lian-Shun . Isatin hybrids and their anti-tuberculosis activity. Chinese Chemical Letters, 2017, 28(2): 159-167. doi: 10.1016/j.cclet.2016.07.032
Binfen Zhao , Liyan Jiang , Qiong Jia . Advances in cyclodextrin polymers adsorbents for separation and enrichment: Classification, mechanism and applications. Chinese Chemical Letters, 2022, 33(1): 11-21. doi: 10.1016/j.cclet.2021.06.031
XU Lin-Nan , BAI Yu , LIU Hu-Wei . Research Progresses in Phosphopeptide Enrichment. Chinese Journal of Analytical Chemistry, 2017, 45(12): 1804-1812. doi: 10.11895/j.issn.0253-3820.171338
LI Hui-Min , ZHOU Yu-Chen , XIAO Yu-Fang , FAN Jing , FENG Su-Ling , XU Sheng-Rui . Application of Cooling-assisted Solid Phase Microextraction in Analysis of Complex Matrix Sample. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1289-1298. doi: 10.19756/j.issn.0253-3820.221157
Peng Lifen , Hu Zhifang , Lu Qichao , Tang Zilong , Jiao Yinchun , Xu Xinhua . DESs: Green solvents for transition metal catalyzed organic reactions. Chinese Chemical Letters, 2019, 30(12): 2151-2156. doi: 10.1016/j.cclet.2019.05.063
Li Tiemei , Song Yuefei , Lv Xiangying , Fan Jing . Progress of Preparation and Applications of Ionic Liquid and Polymeric Ionic Liquid-Based Sorbent Coating in Solid-Phase Microextraction. Chemistry, 2016, 79(8): 723-730.
CHEN Lu-Lu , WANG Zhong-Hua , ZHOU Zhi , HE Bing-Shu , HE Jiu-Ming , HUANG Luo-Jiao , NURBOLAT Aidarhan , LIU Ge-Yu , HAJI Akber Aisa , ABLIZ Zeper . Development of Plant Metabolomics Analytical Approach Based on Liquid Chromatography Tandem Mass Spectrometry in Artemisia rupestris L.. Chinese Journal of Analytical Chemistry, 2018, 46(5): 735-742. doi: 10.11895/j.issn.0253-3820.171489
LI Yang , WANG Ji-Tong , LIU Xiao-Lu , TIAN Jing , JIA Zheng , XIAO Zhi-Ming , FAN Xia . Optimization of Sample Preparation Method for Intracellular Metabolites Metabonomics Analysis of Escherichia Coli. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1402-1410. doi: 10.19756/j.issn.0253-3820.191172
Jun-Yi LI , Xiang CHEN , Qiang-Qiang JIA , Hong-Fei LU , Shao-Jun ZHENG , Li-Zhuang CHEN . A Novel Organic-inorganic Hybrid Phase Transition Compound with Switchable Dielectric Property. Chinese Journal of Structural Chemistry, 2020, 39(5): 889-894. doi: 10.14102/j.cnki.0254-5861.2011-2517
Yu-Miao SU , Ting WANG , Yu-Lin DING , Jia-Jing HUANG , Wen-Mu LI . Preparation Technology of Solvent-free Polyurethane: A Mini-Review. Chinese Journal of Structural Chemistry, 2020, 39(12): 2057-2067. doi: 10.14102/j.cnki.0254–5861.2011–3020
Yuan Hong , Kong Long , Li Tao , Zhang Qiang . A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28(12): 2180-2194. doi: 10.1016/j.cclet.2017.11.038
Jiajia Xu , Zhiguo Zhu , Ting Su , Weiping Liao , Changliang Deng , Dongmei Hao , Yuchao Zhao , Wanzhong Ren , Hongying Lü . Green aerobic oxidative desulfurization of diesel by constructing an Fe-Anderson type polyoxometalate and benzene sulfonic acid-based deep eutectic solvent biomimetic cycle. Chinese Journal of Catalysis, 2020, 41(5): 868-876. doi: S1872-2067(19)63500-X