Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents
* Corresponding authors.
E-mail addresses: wangx933@nenu.edu.cn (X. Wang), sunk468@nenu.edu.cn (K. Sun).
Citation:
Xin Wang, Jianping Meng, Dongyang Zhao, Shi Tang, Kai Sun. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents[J]. Chinese Chemical Letters,
;2023, 34(4): 107736.
doi:
10.1016/j.cclet.2022.08.016
T. Kondo, T. Mitsudo, Chem. Rev. 100 (2000) 3205–3220.
doi: 10.1021/cr9902749
M. Mellah, A. Voituriez, E. Schulz, Chem. Rev. 107 (2007) 5133–5209.
doi: 10.1021/cr068440h
J.E. Taylor, S.D. Bull, J.M.J. Williams, Chem. Soc. Rev. 41 (2012) 2109–2121.
doi: 10.1039/c2cs15288f
B. Mandal, B. Basu, RSC Adv. 4 (2014) 13854–13881.
doi: 10.1039/c3ra45997g
E.A. Ilardi, E. Vitaku, J.T. Njardarson, J. Med. Chem. 57 (2014) 2832–2842.
doi: 10.1021/jm401375q
C. Ni, M. Hu, J. Hu, Chem. Rev. 115 (2015) 765–825.
doi: 10.1021/cr5002386
D. Wang, P. Cao, B. Wang, et al., Org. Lett. 17 (2015) 2420–2423.
doi: 10.1021/acs.orglett.5b00934
X.X. Shao, C.F. Xu, L. Lu, Q.L. Shen, Acc. Chem. Res. 48 (2015) 1227–1236.
doi: 10.1021/acs.accounts.5b00047
M.H. Feng, B.Q. Tang, S.H. Liang, X.F. Jiang, Curr. Top. Med. Chem. 16 (2016) 1200–1216.
doi: 10.2174/1568026615666150915111741
X. Xiao, M. Feng, X. Jiang, Angew. Chem. Int. Ed. 55 (2016) 14121–14125.
doi: 10.1002/anie.201608011
Y. Li, M. Wang, X. Jiang, ACS Catal. 7 (2017) 7587–7592.
doi: 10.1021/acscatal.7b02735
C. Fortugno, G. Varchi, A. Guerrini, et al., Biomed. Anal. 95 (2014) 151–157.
doi: 10.1016/j.jpba.2014.03.002
G. Mugesh, W.W. du Mont, H. Sies, Chem. Rev. 101 (2001) 2125–2180.
doi: 10.1021/cr000426w
C.W. Nogueira, G. Zeni, J.B.T. Rocha, Chem. Rev. 104 (2004) 6255–6286.
doi: 10.1021/cr0406559
J.J. Ai, J. Li, S.J. Ji, S.Y. Wang, Chin. Chem. Lett. 32 (2021) 721–724.
doi: 10.1016/j.cclet.2020.07.007
X.Z. Li, P. Liu, J. He, et al., Green Synth. Catal. 2 (2021) 381–384.
doi: 10.1016/j.gresc.2021.08.006
O. Foss, J. Am. Chem. Soc. 69 (1947) 2236–2237.
B.M. Trost, Chem. Rev. 78 (1978) 363–382.
doi: 10.1021/cr60314a002
D.H.R. Barton, B. Lacher, B. Misterkiewics, S.Z. Zard, Tetrahedron 44 (1988) 1153–1158.
doi: 10.1016/S0040-4020(01)85895-6
K. Fujiki, E. Yoshida, Synth. Commun. 29 (1999) 3289–3294.
doi: 10.1080/00397919908085956
S. Kim, S. Kim, N. Otsuka, I. Ryu, Angew. Chem. Int. Ed. 44 (2005) 6183–6186.
doi: 10.1002/anie.200501606
F. Kopp, P. Knochel, Org. Lett. 9 (2007) 1639–1641.
doi: 10.1021/ol063136w
S.H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 46 (2007) 7685–7688.
doi: 10.1002/anie.200701984
V. Girijavallabhan, C. Alvarez, F.G. Njoroge, J. Org. Chem. 76 (2011) 6442–6446.
doi: 10.1021/jo201016z
P. Saravanan, P. Anbarasan, Org. Lett. 16 (2014) 848–851.
doi: 10.1021/ol4036209
S. Yoshida, Y. Sugimura, Y. Hazamam, et al., Chem. Commun. 51 (2015) 16613–16616.
doi: 10.1039/C5CC07463K
P.K. Shyam, H.Y. Jang, J. Org. Chem. 82 (2017) 1761–1767.
doi: 10.1021/acs.joc.6b03016
N. Wang, P. Saidhareddy, X. Jiang, Nat. Prod. Rep. 37 (2020) 246–275.
doi: 10.1039/C8NP00093J
H. Haruki, M.G. Pedersen, K.I. Gorska, F. Pojer, K. Johnsson, Science 340 (2013) 987–991.
doi: 10.1126/science.1232972
T.J. Deming, Bioconjugate Chem. 28 (2017) 691–700.
doi: 10.1021/acs.bioconjchem.6b00696
M. Yan, J.C. Lo, J.T. Edwards, P.S. Baran, J. Am. Chem. Soc. 138 (2016) 12692–12714.
doi: 10.1021/jacs.6b08856
S. Crespi, M. Chem. Rev. 120 (2020) 9790–9833.
doi: 10.1021/acs.chemrev.0c00278
A. Studer, D.P. Curran, Angew. Chem. Int. Ed. 55 (2016) 58–102.
doi: 10.1002/anie.201505090
K. Sun, Z.D. Shi, Z.H. Liu, et al., Org. Lett. 20 (2018) 6687–6690.
doi: 10.1021/acs.orglett.8b02733
K. Sun, S.N. Wang, R.R. Feng, et al., Org. Lett. 21 (2019) 2052–2055.
doi: 10.1021/acs.orglett.9b00240
K. Sun, G.F. Li, Y.Y. Li, et al., Adv. Synth. Catal. 362 (2020) 1947–1954.
doi: 10.1002/adsc.202000040
X. Wang, Q.L. Wang, Y.R. Xue, et al., Chem. Commun. 56 (2020) 4436–4439.
doi: 10.1039/D0CC01079K
K. Sun, X. Wang, C. Li, H. Wang, L. Li, Org. Chem. Front. 7 (2020) 3100–3119.
doi: 10.1039/D0QO00849D
X. Wang, S. Guo, Y. Zhang, et al., Adv. Synth. Catal. 363 (2021) 3290–3296.
doi: 10.1002/adsc.202100208
Y. Xing, C. Li, J.P. Meng, et al., Adv. Synth. Catal. 363 (2021) 3913–3936.
doi: 10.1002/adsc.202100446
X. Wang, Y. Zhang, K. Sun, J.P. Meng, B. Zhang, Chin. J. Org. Chem. 41 (2021) 4588–4609.
doi: 10.6023/cjoc202109046
S. Guo, X. Wang, D.Y. Zhao, et al., Asian J. Org. Chem. 11 (2022) e20210081.
X. Wang, J. Lei, S. Guo, et al., Chem. Commun. 58 (2022) 1526–1529.
doi: 10.1039/D1CC06323E
C. Ghiazza, T. Billard, Eur. J. Org. Chem. 2021 (2021) 5571–5584.
doi: 10.1002/ejoc.202100944
S. Huang, Z.H. Xia, K. Lu, et al., Chin. J. Chem. 38 (2020) 1625–1628.
doi: 10.1002/cjoc.202000279
P. Mampuys, C.R. McElroy, J.H. Clark, R.V.A. Orru, B.U.W. Maes, Adv. Synth. Catal. 362 (2020) 3–64.
doi: 10.1002/adsc.201900864
M.D. Bentley, I.B. Douglass, J.A. Lacadie, J. Org. Chem. 37 (1972) 333–334.
doi: 10.1021/jo00967a040
G.G. Liang, J. Chen, J.L. Chen, et al., Tetrahedron Lett. 53 (2012) 6768–6770.
doi: 10.1016/j.tetlet.2012.09.132
N. Taniguchi, Eur. J. Org. Chem. 2014 (2014) 5691–5694.
doi: 10.1002/ejoc.201402847
P. Natarajan, Tetrahedron Lett. 56 (2015) 4131–4134.
doi: 10.1016/j.tetlet.2015.05.050
Y. Zheng, F.L. Qing, Y. Huang, X.H. Xu, Adv. Synth. Catal. 358 (2016) 3477–3481.
doi: 10.1002/adsc.201600633
X.J. Li, C. Zhou, P.H. Diao, Y.Q. Ge, C. Guo, Tetrahedron Lett. 58 (2017) 1296–1300.
doi: 10.1016/j.tetlet.2017.02.042
G.Y. Zhang, S.S. Lv, A. Shoberu, J.P. Zou, J. Org. Chem. 82 (2017) 9801–9807.
doi: 10.1021/acs.joc.7b01121
Z.Z. Yang, Y.S. Shi, Z. Zhan, et al., ChemElectroChem 5 (2018) 3619–3623.
doi: 10.1002/celc.201801058
X. Zhang, T. Cui, Y. Zhang, et al., Adv. Synth. Catal. 361 (2019) 2014–2019.
doi: 10.1002/adsc.201900047
A.K. Pandey, A. Kumar, N. Verma, S.K. Srivastava, Beilstein Arch (2021) 202115.
X.C. Wang, C.M. Zhang, Y.D. Zhang, Z.H. Ren, Z.H. Guan, Chin. J. Org. Chem. 40 (2020) 1618–1624.
doi: 10.6023/cjoc202002009
H. Li, Y.X. Han, Z. Yang, et al., Chin. Chem. Lett. 32 (2021) 1709–1712.
doi: 10.1016/j.cclet.2020.12.027
P. Zhang, W.J. Chang, H.Y. Jiao, et al., Chin. Chem. Lett. 32 (2021) 1717–1720.
doi: 10.1016/j.cclet.2021.01.024
Z. Zhang, W.X. Chang, Chin. J. Org. Chem. 41 (2021) 1835–1850.
S.P. Wu, D.K. Wang, Q.Q. Kang, et al., Chem. Commun. 57 (2021) 8288–8291.
doi: 10.1039/D1CC03252F
Y. Liu, S.Y. Xing, J. Zhang, et al., Org. Chem. Front. 9 (2022) 1375–1382.
doi: 10.1039/D1QO01873F
Y.H. Lv, J.P. Meng, C. Li, et al., Adv. Synth. Catal. 363 (2021) 5235–5265.
doi: 10.1002/adsc.202101184
K. Sun, Y. Li, Q. Zhang, Sci. China Chem. 58 (2015) 1354–1358.
doi: 10.1007/s11426-015-5385-y
K. Sun, X. Wang, L.L. Liu, et al., ACS Catal. 5 (2015) 7194–7198.
doi: 10.1021/acscatal.5b02411
D.H. Zhu, X.X. Shao, X. Hong, L. Lu, Q.L. Shen, Angew. Chem. 128 (2016) 16039–16043.
doi: 10.1002/ange.201609468
P.K. Shyam, S. Son, H.Y. Jang, Eur. J. Org. Chem. 2017 (2017) 5025–5031.
doi: 10.1002/ejoc.201700971
S. Huang, N. Thirupathi, C.H. Tung, Z.H. Xu, J. Org. Chem. 83 (2018) 9449–9455.
doi: 10.1021/acs.joc.8b01161
Q.J. Liang, P.J. Walsh, T.Z. Jia, ACS Catal. 10 (2020) 2633–2639.
doi: 10.1021/acscatal.9b04887
C.K. Prier, D.A. Rankic, D.W. MacMillan, Chem. Rev. 113 (2013) 5322–5363.
doi: 10.1021/cr300503r
M.N. Hopkinson, A. Tlahuext-Aca, F. Glorius, Acc. Chem. Res. 49 (2016) 2261–2272.
doi: 10.1021/acs.accounts.6b00351
N.A. Romero, D.A. Nicewicz, Chem. Rev. 116 (2016) 10075–10166.
doi: 10.1021/acs.chemrev.6b00057
X.Y. Yu, J.R. Chen, W.J. Xiao, Chem. Rev. 121 (2020) 506–561.
T. Rawner, E. Lutsker, C.A. Kaiser, O. Reiser, ACS Catal. 8 (2018) 3950–3956.
doi: 10.1021/acscatal.8b00847
B. Lipp, L.M. Kammer, M. Kücükdisli, et al., Chem. Eur. J. 25 (2019) 8965–8969.
doi: 10.1002/chem.201901175
L.M. Kammer, M. Krumb, B. Spitzbarth, et al., Org. Lett. 22 (2020) 3318–3322.
doi: 10.1021/acs.orglett.0c00614
J.K. Liu, H. Yao, X.N. Li, et al., Org. Chem. Front. 7 (2020) 1314–1320.
doi: 10.1039/D0QO00343C
J. Li, X.E. Yang, S.L. Wang, et al., Org. Lett. 22 (2020) 4908–4913.
doi: 10.1021/acs.orglett.0c01776
K. Gadde, P. Mampuys, A. Guidetti, et al., ACS Catal. 10 (2020) 8765–8779.
doi: 10.1021/acscatal.0c02159
C.M. Huang, J. Li, J.J. Ai, et al., Org. Lett. 22 (2020) 9128–9132.
doi: 10.1021/acs.orglett.0c03562
Y. Dong, P. Ji, Y.T. Zhang, et al., Org. Lett. 22 (2020) 9562–9567.
doi: 10.1021/acs.orglett.0c03624
H. Chen, Y.Y. Yan, N.N. Zhang, et al., Org. Lett. 23 (2021) 376–381.
doi: 10.1021/acs.orglett.0c03876
F. Wang, S.Y. Wang, Org. Chem. Front. 8 (2021) 1976–1982.
doi: 10.1039/D1QO00085C
W.Y. Li, L. Zhou, Green Chem. 23 (2021) 6652–6658.
doi: 10.1039/D1GC02036F
W.Z. Bi, W.J. Zhang, Z.J. Li, et al., Org. Biomol. Chem. 19 (2021) 8701–8705.
doi: 10.1039/D1OB01592C
X.Y. Liu, S.Y. Tian, Y.F. Jiang, W.D. Rao, S.Y. Wang, Org. Lett. 23 (2021) 8246–8251.
doi: 10.1021/acs.orglett.1c02981
Y. Liu, N.N. Zhang, Y.L. Xu, Y.Y. Chen, J. Org. Chem. 86 (2021) 16882–16891.
doi: 10.1021/acs.joc.1c02082
J. Xuan, Z. Zhang, W. Xiao, Angew. Chem. Int. Ed. 54 (2015) 15632–15641.
doi: 10.1002/anie.201505731
C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev. 113 (2013) 5322–5363.
doi: 10.1021/cr300503r
J. Xuan, W. Xiao, Angew. Chem. Int. Ed. 51 (2012) 6828–6838.
doi: 10.1002/anie.201200223
J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 40 (2011) 102–113.
doi: 10.1039/B913880N
T.P. Yoon, M.A. Ischay, J. Du, Nat. Chem. 2 (2010) 527–532.
doi: 10.1038/nchem.687
T. Chatterjee, N. Iqbal, Y. You, E.J. Cho, Acc. Chem. Res. 49 (2016) 2284–2294.
doi: 10.1021/acs.accounts.6b00248
K.L. Skubi, T.R. Blum, T.P. Yoon, Chem. Rev. 116 (2016) 10035–10074.
doi: 10.1021/acs.chemrev.6b00018
D. Kalyani, K.B. McMurtrey, S.R. Neufeldt, M.S. Sanford, J. Am. Chem. Soc. 133 (2011) 18566–18569.
doi: 10.1021/ja208068w
S.R. Neufeldt, M.S. Sanford, Adv. Synth. Catal. 354 (2012) 3517–3522.
doi: 10.1002/adsc.201200738
J. Zoller, D.C. Fabry, M.A. Ronge, M. Rueping, Angew. Chem. Int. Ed. 53 (2014) 13264–13268.
doi: 10.1002/anie.201405478
J. Xuan, T. Zeng, Z. Feng, et al., Angew. Chem. Int. Ed. 54 (2015) 1625–1628.
doi: 10.1002/anie.201409999
J.A. Terrett, J.D. Cuthbertson, V.W. Shurtleff, D.W.C. MacMillan, Nature 524 (2015) 330–334.
doi: 10.1038/nature14875
Z. Zuo, H. Cong, W. Li, et al., J. Am. Chem. Soc. 138 (2016) 1832–1835.
doi: 10.1021/jacs.5b13211
Y. Ye, M.S. Sanford, J. Am. Chem. Soc. 134 (2012) 9034–9037.
doi: 10.1021/ja301553c
A.Y. Chan, I.B. Perry, N.B. Bissonnette, et al., Chem. Rev. 122 (2022) 1485–1542.
doi: 10.1021/acs.chemrev.1c00383
H.Y. Li, C.C. Shan, C.H. Tung, Z.H. Xu, Chem. Sci. 8 (2017) 2610–2615.
doi: 10.1039/C6SC05093J
T.T. Song, H.Y. Li, F. Wei, C.H. Tung, Z.H. Xu, Tetrahedron Lett. 60 (2019) 916–919.
doi: 10.1016/j.tetlet.2019.02.039
R. Zhang, P. Xu, S.Y. Wang, S.J. Ji, J. Org. Chem. 84 (2019) 12324–12333.
doi: 10.1021/acs.joc.9b01626
X. Zhou, Z.Y. Peng, P.G. Wang, Q.C. Liu, T.Z. Jia, Org. Lett. 23 (2021) 1054–1059.
doi: 10.1021/acs.orglett.0c04254
T.G. Back, S. Collins, R.G. Kerr, J. Org. Chem. 48 (1983) 3077–3084.
doi: 10.1021/jo00166a030
P. Mampuys, Y.P. Zhu, S. Sergeyev, et al., Org. Lett. 18 (2016) 2808–2811.
doi: 10.1021/acs.orglett.6b01023
N. Taniguchi, Tetrahedron 73 (2017) 2030–2035.
doi: 10.1016/j.tet.2017.02.047
S.J. Hwang, P.K. Shyam, H.Y. Jang, Bull. Korean Chem. Soc. 39 (2018) 535–539.
doi: 10.1002/bkcs.11426
S. Son, P.K. Shyam, H. Park, I. Jeong, H.Y. Jang, Eur. J. Org. Chem. 2018 (2018) 3365–3371.
doi: 10.1002/ejoc.201800778
Y. Fang, C. Liu, F. Wang, et al., Org. Chem. Front. 6 (2019) 660–663.
Y. Fang, C. Liu, W.D. Rao, S.Y. Wang, S.J. Ji, Org. Lett. 21 (2019) 7687–7691.
doi: 10.1021/acs.orglett.9b01886
L. Cao, C. Jimeno, P. Renaud, Adv. Synth. Catal. 362 (2020) 3644–3648.
doi: 10.1002/adsc.202000657
F. Wang, B.X. Liu, W.D. Rao, S.Y. Wang, Org. Lett. 22 (2020) 6600–6604.
doi: 10.1021/acs.orglett.0c02370
K.M. Mao, M.W. Bian, L. Dai, et al., Org. Lett. 23 (2021) 218–224.
doi: 10.1021/acs.orglett.0c03946
A. Shankar, M. Waheed, R.J. Reddy, SynOpen 5 (2021) 91–99.
doi: 10.1055/a-1422-9411
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Weinan Hu , Li Li , Xinyu Wang , Yongqiang Zhang , Maoping Song , Linlin Shi , Xinqi Hao , Siyu Lu . Carbonized polymer dots: Illuminating synthesis pathways, optical frontiers, and photoelectronic breakthroughs. Chinese Chemical Letters, 2025, 36(11): 111612-. doi: 10.1016/j.cclet.2025.111612
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Hong-Qiang Dong , Shang-Bo Yu , Shu-Meng Wang , Jia-Hao Zhao , Xu-Guan Bai , Shi-Xing Lei , Zhen-Nan Tian , Jia Tian , Kang-Da Zhang , Lu Wang , Zhan-Ting Li , Shigui Chen . Construction of radical halogen-bonded organic frameworks with enhanced magnetism and conductivity. Chinese Chemical Letters, 2025, 36(8): 110730-. doi: 10.1016/j.cclet.2024.110730
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Zhongjie Li , Xiangyue Kong , Yuhao Liu , Huayu Qiu , Lingling Zhan , Shouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378
Sijia Zhou , Tianyi Zhou , Yuhua Hou , Wang Li , Yanfei Shen , Songqin Liu , Kaiqing Wu , Yuanjian Zhang . Recent advances in electrochemiluminescence based on polymeric luminophores. Chinese Chemical Letters, 2025, 36(5): 110284-. doi: 10.1016/j.cclet.2024.110284
Zhenhui Song , Xing Wu , Tianyu Gao , Fubing Yao , Xi Tang , Qaisar Mahmood , Chong-Jian Tang . Performance enhancement strategies for electrooxidation degradation of landfill leachate: A review. Chinese Chemical Letters, 2025, 36(12): 111008-. doi: 10.1016/j.cclet.2025.111008
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
Hefei Yang , Le-Cheng Wang , Xiao-Feng Wu . Sustainable carbonylative transformation of alkyl iodides to amides via crosslinking of EDA and XAT. Chinese Chemical Letters, 2025, 36(9): 110843-. doi: 10.1016/j.cclet.2025.110843
Fengshun Wang , Huachao Ji , Zefei Wu , Kang Chen , Wenqi Gao , Chen Wang , Longlu Wang , Jianmei Chen , Dafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898
Tong Zhao , Ke Wang , Feiyu Liu , Shiyu Zhang , Shih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321
Huili Zhao , Xiao Tan , Huining Chai , Lin Hu , Hongbo Li , Lijun Qu , Xueji Zhang , Guangyao Zhang . Recent advances in conductive MOF-based electrochemical sensors. Chinese Chemical Letters, 2025, 36(8): 110571-. doi: 10.1016/j.cclet.2024.110571
Yanqiu Xu , Xuanli Chen , Yin Li , Keyu Zhang , Shaoze Zhang , Junxian Hu , Yaochun Yao . Progress in Na2FePO4F cathodes for energy storage: Fabrication, modification and application. Chinese Chemical Letters, 2025, 36(12): 110574-. doi: 10.1016/j.cclet.2024.110574
Ping Wang , Chunmao Chen , Hongwei Ren , Erhong Duan . A review of carbon dots in synthesis strategies, photoluminescence mechanisms, and applications in wastewater treatment. Chinese Chemical Letters, 2025, 36(9): 110725-. doi: 10.1016/j.cclet.2024.110725
Shuaiwen Li , Zihui Chen , Feng Yang , Wanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902