Degradation of iodinated X-ray contrast media by advanced oxidation processes: A literature review with a focus on degradation pathways
-
* Corresponding author.
E-mail address: zhwang@des.ecnu.edu.cn (Z. Wang).
Citation:
Meiru Hou, Xiaodie Li, Yu Fu, Lingli Wang, Dagang Lin, Zhaohui Wang. Degradation of iodinated X-ray contrast media by advanced oxidation processes: A literature review with a focus on degradation pathways[J]. Chinese Chemical Letters,
;2023, 34(4): 107723.
doi:
10.1016/j.cclet.2022.08.003
I. Arslan-Alaton, T. Olmez-Hanci, G. Korkmaz, C. Sahin, Chem. Eng. J. 318 (2017) 64–75.
doi: 10.1016/j.cej.2016.05.021
W. Bottinor, P. Polkampally, I. Jovin, Int. J. Angiol. 22 (2013) 149–154.
doi: 10.1055/s-0033-1348885
T.A. Ternes, R. Hirsch, Environ. Sci. Technol. 34 (2000) 2741–2748.
doi: 10.1021/es991118m
T. Steger-Hartmann, R. L. aange, H. Schweinfurth, M. Tschampel, I. Rehmann, Water Res. 36 (2002) 266–274.
doi: 10.1016/S0043-1354(01)00241-X
S.B. Yu, A.D. Watson, Chem. Rev. 99 (1999) 2353–2377.
doi: 10.1021/cr980441p
K.G. Estep, K.A. Josef, E.R. Bacon, et al., J. Med. Chem. 43 (2000) 1940–1948.
doi: 10.1021/jm990407i
W. Zhang, I. Soutrel, A. Amrane, F. Fourcade, F. Geneste, Front. Chem. 8 (2020) 646.
doi: 10.3389/fchem.2020.00646
C.Y. Hu, Y.Z. Hou, Y.L. Lin, et al., Chemosphere 229 (2019) 602–610.
doi: 10.1016/j.chemosphere.2019.05.012
C.Y. Hu, S.C. Ren, Y.L. Lin, et al., J. Water Reuse Desal. 11 (2021) 560–571.
doi: 10.2166/wrd.2021.053
S.E. Duirk, C. Lindell, C.C. Cornelison, et al., Environ. Sci. Technol. 45 (2011) 6845–6854.
doi: 10.1021/es200983f
T. Ye, B. Xu, Z. Wang, et al., Water Res. 66 (2014) 390–398.
doi: 10.1016/j.watres.2014.08.044
T. Steger-Hartmann, R. Länge, H. Schweinfurth, Environ. Res. 42 (1999) 274–281.
S.S. Kabirhashemi, H. Eskandari, Sens. Actuators B: Chem. 348 (2021) 130731.
doi: 10.1016/j.snb.2021.130731
S. Gartiser, L. Brinker, T. Erbe, K. Kummerer, R. Willmund, Acta Hydroch. Hydrob. 24 (1996) 90–97.
doi: 10.1002/aheh.19960240206
K. Kuemmerer, T. Erbe, S. Gartiser, L. Brinker, Chemosphere 36 (1998) 2437–2445.
doi: 10.1016/S0045-6535(97)10200-4
T.E. Doll, F.H. Frimmel, Water Res. 38 (2004) 955–964.
doi: 10.1016/j.watres.2003.11.009
A. Putschew, S. Wischnack, M. Jekel, Environ. Sci. Technol. 255 (2000) 129–134.
S.D. Richardson, F. Fasano, J.J. Ellington, et al., Environ. Sci. Technol. 42 (2008) 8330–8338.
doi: 10.1021/es801169k
H. Dong, Z. Qiang, J. Lian, et al., Water Res. 129 (2018) 319–326.
doi: 10.1016/j.watres.2017.11.032
S. Pérez, D. Barceló, Anal. Bioanal. Chem. 387 (2007) 1235–1246.
doi: 10.1007/s00216-006-0953-9
W. Kalsch, Sci. Total Environ. 225 (1999) 143–153.
doi: 10.1016/S0048-9697(98)00340-4
T. Erbe, K. Kümmerer, S. Gartiser, L. Brinker, Fortschr. Röntgenstr. 169 (1998) 420–423.
doi: 10.1055/s-2007-1015310
T.A. Ternes, Water Res. 32 (1998) 3245–3260.
doi: 10.1016/S0043-1354(98)00099-2
D. Kanakaraju, B.D. Glass, M. Oelgemoller, J. Environ. Manage. 219 (2018) 189–207.
doi: 10.1016/j.jenvman.2018.04.103
S. Perez, P. Eichhorn, M.D. Celiz, D.S. Aga, Anal. Chem. 78 (2006) 1866–1874.
doi: 10.1021/ac0518809
G. Teijon, L. Candela, K. Tamoh, A. Molina-Diaz, A.R. Fernandez-Alba, Sci. Total Environ. 408 (2010) 3584–3595.
doi: 10.1016/j.scitotenv.2010.04.041
S. Schittko, A. Putschew, M. Jekel, Water Sci. Technol. 50 (2004) 261–268.
D. Weissbrodt, L. Kovalova, C. Ort, et al., Environ. Sci. Technol. 43 (2009) 4810–4817.
doi: 10.1021/es8036725
K. Nodler, T. Licha, K. Bester, M. Sauter, J. Chromatogr A 1217 (2010) 6511–6521.
doi: 10.1016/j.chroma.2010.08.048
A. Tiehm, N. Schmidt, M. Stieber, et al., Water Resour. Manage. 25 (2011) 1195–1203.
doi: 10.1007/s11269-010-9678-9
I.J. Lopez-Prieto, S. Wu, W. Ji, K.D. Daniels, S.A. Snyder, Chemosphere 243 (2020) 125311.
doi: 10.1016/j.chemosphere.2019.125311
A. Sengar, A. Vijayanandan, Sci. Total Environ. 769 (2021) 144846.
doi: 10.1016/j.scitotenv.2020.144846
A. Sengar, A. Vijayanandan, Sci. Total Environ. 807 (2022) 150677.
doi: 10.1016/j.scitotenv.2021.150677
Y. Watanabe, L.T. Bach, P. Van Dinh, et al., Arch. Environ. Contam. Toxicol. 70 (2016) 671–681.
doi: 10.1007/s00244-015-0220-1
B. Yao, S. Yan, L. Lian, et al., Environ. Pollut. 236 (2018) 889–898.
doi: 10.1016/j.envpol.2017.10.032
Y.Y. Yang, J.L. Zhao, Y.S. Liu, et al., Sci. Total Environ. 616-617 (2018) 816–823.
T. Azuma, K. Otomo, M. Kunitou, et al., Sci. Total Environ. 657 (2019) 476–484.
doi: 10.1016/j.scitotenv.2018.11.433
D. Fabbri, P. Calza, D. Dalmasso, et al., Sci. Total Environ. 572 (2016) 340–351.
doi: 10.1016/j.scitotenv.2016.08.003
K. Nodler, D. Voutsa, T. Licha, Mar. Pollut. Bull. 85 (2014) 50–59.
doi: 10.1016/j.marpolbul.2014.06.024
C. Valls-Cantenys, M. Scheurer, M. Iglesias, et al., Anal. Bioanal. Chem. 408 (2016) 6189–6200.
doi: 10.1007/s00216-016-9731-5
R. Münze, C. Hannemann, P. Orlinskiy, et al., Sci. Total Environ. 599 (2017) 387–399.
K. Ribbers, L. Breuer, R.A. During, Chemosphere 218 (2019) 189–196.
doi: 10.1016/j.chemosphere.2018.10.193
J.L. Kormos, M. Schulz, T.A. Ternes, Environ. Sci. Technol. 45 (2011) 8723–8732.
doi: 10.1021/es2018187
L. Wolf, C. Zwiener, M. Zemann, Sci. Total Environ. 430 (2012) 8–19.
doi: 10.1016/j.scitotenv.2012.04.059
L. Candela, K. Tamoh, I. Vadillo, J. Valdes-Abellan, Environ. Earth Sci. 75 (2016) 244.
doi: 10.1007/s12665-015-4956-8
W. Seitz, R. Winzenbacher, Environ. Monit. Assess. 189 (2017) 244.
doi: 10.1007/s10661-017-5953-z
D. Simazaki, R. Kubota, T. Suzuki, et al., Water Res. 76 (2015) 187–200.
doi: 10.1016/j.watres.2015.02.059
Z. Xu, X. Li, X. Hu, D. Yin, Chemosphere 184 (2017) 253–260.
doi: 10.1016/j.chemosphere.2017.05.048
W. Ens, F. Senner, B. Gygax, G. Schlotterbeck, Anal. Bioanal. Chem. 406 (2014) 2789–2798.
doi: 10.1007/s00216-014-7712-0
A. Mendoza, B. Zonja, N. Mastroianni, et al., Environ. Int. 86 (2016) 107–118.
doi: 10.1016/j.envint.2015.11.001
T. Azuma, K. Otomo, M. Kunitou, et al., Sep. Purif. Technol. 212 (2019) 483–489.
doi: 10.1016/j.seppur.2018.11.059
T.A. Ternes, J. Stüber, N. Herrmann, et al., Water Res. 37 (2003) 1976–1982.
doi: 10.1016/S0043-1354(02)00570-5
R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Catal. Today 53 (1999) 51–59.
doi: 10.1016/S0920-5861(99)00102-9
B. Legube, N.K.V. Leitner, Catal. Today 53 (1999) 61–72.
doi: 10.1016/S0920-5861(99)00103-0
F.J. Beltran, F.J. Rivas, R. Montero-de-Espinosa, Appl. Catal. B: Environ. 39 (2002) 221–231.
doi: 10.1016/S0926-3373(02)00102-9
S.J. Masten, S.H.R. Davies, Environ. Sci Technol. 28 (1994) 180–185.
doi: 10.1021/es00053a001
U. Von Gunten, Water Res. 37 (2003) 1443–1467.
doi: 10.1016/S0043-1354(02)00457-8
M.O. Buffle, J. Schumacher, S. Meylan, M. Jekel, U. von Gunten, Ozone Sci. Eng. 28 (2006) 247–259.
doi: 10.1080/01919510600718825
T. Matsushita, M. Hashizuka, T. Kuriyama, Y. Matsui, N. Shirasaki, Chemosphere 148 (2016) 233–240.
doi: 10.1016/j.chemosphere.2016.01.037
M.M. Huber, A.G. Bel, A. Joss, et al., Environ. Sci. Technol. 39 (2005) 4290–4299.
doi: 10.1021/es048396s
W. Seitz, J.Q. Jiang, W. Schulz, et al., Chemosphere 70 (2008) 1238–1246.
doi: 10.1016/j.chemosphere.2007.07.081
L. Kovalova, H. Siegrist, U. von Gunten, et al., Environ. Sci. Technol. 47 (2013) 7899–7908.
doi: 10.1021/es400708w
L. Ferrando-Climent, R. Gonzalez-Olmos, A. Anfruns, et al., Chemosphere 168 (2017) 284–292.
doi: 10.1016/j.chemosphere.2016.10.057
J.L. Acero, U. Von Gunten, J. Am. Water Work Assoc. 93 (2001) 90–100.
R. Gulde, B. Clerc, M. Rutsch, et al., Water Res. 207 (2021) 117812.
doi: 10.1016/j.watres.2021.117812
A.D. Bokare, W. Choi, J. Hazard. Mater. 275 (2014) 121–135.
doi: 10.1016/j.jhazmat.2014.04.054
N.N. Wang, T. Zheng, G.S. Zhang, P. Wang, J. Environ. 4 (2016) 762–787.
I. Velo-Gala, J.J. López-Peñalver, M. Sánchez-Polo, J. Rivera-Utrilla, Chem. Eng. J. 241 (2014) 504–512.
doi: 10.1016/j.cej.2013.10.036
X. Tao, J.M. Su, J.F. Chen, J.C. Zhao, Chem. Commun. 36 (2005) 4607–4609.
F.J. Real, F.J. Benitez, J.L. Acero, J.J.P. Sagasti, F. Casas, Ind. Eng. Chem. Res. 48 (2009) 3380–3388.
doi: 10.1021/ie801762p
E. Bocos, N. Oturan, M. Pazos, M.A. Sanroman, M.A. Oturan, Environ. Sci. Pollut. Res. Int. 23 (2016) 19134–19144.
doi: 10.1007/s11356-016-7054-x
J. Jeong, J. Yoon, Water Res. 39 (2005) 2893–2900.
doi: 10.1016/j.watres.2005.05.014
Y. Zuo, J. Zhan, Atmos. Environ. 39 (2005) 27–37.
doi: 10.1016/j.atmosenv.2004.09.058
F. Gulshan, S. Yanagida, Y. Kameshima, et al., Water Res. 44 (2010) 2876–2884.
doi: 10.1016/j.watres.2010.01.040
C. Zhao, L.E. Arroyo-Mora, A.P. DeCaprio, et al., Water Res. 67 (2014) 144–153.
doi: 10.1016/j.watres.2014.09.009
T.E. Doll, F.H. Frimmel, Chemosphere 52 (2003) 1757–1769.
doi: 10.1016/S0045-6535(03)00446-6
M. Sprehe, S.U. Geiûen, A. Vogelpohl, Water Sci. Technol. 44 (2001) 317–323.
G. Prados-Joya, M. Sanchez-Polo, J. Rivera-Utrilla, M. Ferro-Garcia, Water Res. 45 (2011) 393–403.
doi: 10.1016/j.watres.2010.08.015
T.E. Doll, F.H. Frimmel, Water Res. 39 (2005) 403–411.
doi: 10.1016/j.watres.2004.09.016
M.N. Sugihara, D. Moeller, T. Paul, T.J. Strathmann, Appl. Catal. B: Environ. 129 (2013) 114–122.
doi: 10.1016/j.apcatb.2012.09.013
J.M. Herrmann, Catal. Today 53 (1999) 115–129.
doi: 10.1016/S0920-5861(99)00107-8
J.Z. Zhang, J. Phys. Chem. B 104 (2000) 7239–7253.
D.D. Dionysiou, M.T. Suidan, I. Baudin, J.M. Laine, Appl. Catal. B: Environ. 50 (2004) 259–269.
doi: 10.1016/j.apcatb.2004.01.022
K.A. Hislop, J.R. Bolton, Environ. Sci. Technol. 33 (1999) 3119–3126.
doi: 10.1021/es9810134
A.K. Biń, S. Sobera-Madej, Ozone Sci. Eng. 34 (2012) 136–139.
doi: 10.1080/01919512.2012.650130
X.X. He, M. Pelaez, J.A. Westrick, et al., Water Res. 46 (2012) 1501–1510.
doi: 10.1016/j.watres.2011.11.009
X. Zhao, J. Jiang, S. Pang, et al., Chemosphere 221 (2019) 270–277.
doi: 10.1016/j.chemosphere.2018.12.162
C.C. Wong, W. Chu, Environ. Sci. Technol. 37 (2003) 2310–2316.
doi: 10.1021/es020898n
S. Perez, P. Eichhorn, V. Ceballos, D. Barcelo, J. Mass Spectrom. 44 (2009) 1308–1317.
doi: 10.1002/jms.1613
M. Sprehe, S.U. Geissen, A. Vogelpohl, Water Sci. Technol. 44 (2001) 317–323.
E. Borowska, E. Felis, S. Zabczynski, Water Air Soil Pollut 226 (2015) 151.
doi: 10.1007/s11270-015-2383-9
C. Sichel, C. Garcia, K. Andre, Water Res. 45 (2011) 6371–6380.
doi: 10.1016/j.watres.2011.09.025
X. Kong, J. Jiang, J. Ma, Y. Yang, S. Pang, Chemosphere 193 (2018) 655–663.
doi: 10.1016/j.chemosphere.2017.11.064
C.Y. Hu, Y.Z. Hou, Y.L. Lin, A.P. Li, Y.G. Deng, Chemosphere 360 (2019) 1003–1010.
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. 17 (1988) 514–886.
S.J. Zhang, H. Jiang, M.J. Li, et al., Environ. Sci. Technol. 41 (2007) 1977–1982.
doi: 10.1021/es062031l
Q. Zhao, R. Goto, T. Saito, T. Kobayashi, T. Sasaki, Chemosphere 256 (2020) 127021.
doi: 10.1016/j.chemosphere.2020.127021
Q. Zhao, T. Kobayashi, T. Saito, T. Sasaki, J. Hazard. Mater. 411 (2021) 125071.
doi: 10.1016/j.jhazmat.2021.125071
J. Jeong, J. Jung, W.J. Cooper, Water Res. 44 (2010) 4391–4398.
doi: 10.1016/j.watres.2010.05.054
I. Velo-Gala, J.J. López-Peñalver, M. Sánchez-Polo, J. Rivera-Utrilla, Chem. Eng. J. 195-196 (2012) 369–376.
N. Getoff, W. Lutz, Radiat. Phys. Chem. 25 (1985) 21–26.
S.P. Mezyk, J.R. Peller, S.K. Cole, et al., Ozone Sci. Eng. 30 (2008) 58–64.
doi: 10.1080/01919510701761112
G. Zhao, Y. Pang, L. Liu, J. Gao, B. Lv, J. Hazard. Mater. 179 (2010) 1078–1083.
doi: 10.1016/j.jhazmat.2010.03.115
C. Zwiener, T. Glauner, J. Sturm, M. Worner, F.H. Frimmel, Anal. Bioanal. Chem. 395 (2009) 1885–1892.
doi: 10.1007/s00216-009-3098-9
E. Brillas, C.A. Martínez-Huitle, Appl. Catal. B: Environ. 166-167 (2015) 603–643.
M. Moura de Salles Pupo, J.M. Albahaca Oliva, K.I. Barrios Eguiluz, G.R. Salazar-Banda, J. Radjenovic, Chemosphere 253 (2020) 126701.
doi: 10.1016/j.chemosphere.2020.126701
X.D. Lv, S.Q. Yang, W.J. Xue, Y.H. Cui, Z.Q. Liu, J. Hazard. Mater. 366 (2019) 250–258.
doi: 10.1016/j.jhazmat.2018.11.091
J. Radjenovic, M. Petrovic, Water Res. 94 (2016) 128–135.
doi: 10.1016/j.watres.2016.02.045
G. Del Moro, C. Pastore, C. Di Iaconi, G. Mascolo, Sci. Total Environ. 506-507 (2015) 631–643.
O. Turkay, S. Barisci, E. Ulusoy, A. Dimoglo, Water Air Soil Pollut 229 (2018) 170–181.
doi: 10.1007/s11270-018-3823-0
M. Zaghdoudi, F. Fourcade, I. Soutrel, et al., J. Hazard. Mater. 335 (2017) 10–17.
doi: 10.1016/j.jhazmat.2017.04.028
F. Geneste, Curr. Opin. Electrochem. 11 (2018) 19–24.
doi: 10.1016/j.coelec.2018.07.002
C. Lutke Eversloh, N. Henning, M. Schulz, T.A. Ternes, Water Res. 48 (2014) 237–246.
doi: 10.1016/j.watres.2013.09.035
E. Hapeshi, A. Lambrianides, P. Koutsoftas, et al., Environ. Sci. Pollut. Res. Int. 20 (2013) 3592–3606.
doi: 10.1007/s11356-013-1605-1
G.P. Anipsitakis, D.D. Dionysiou, Appl. Catal. B: Environ. 54 (2004) 155–163.
doi: 10.1016/j.apcatb.2004.05.025
M.M. Ahmed, S. Barbati, P. Doumenq, S. Chiron, Chem. Eng. J. 197 (2012) 440–447.
doi: 10.1016/j.cej.2012.05.040
Y. Gao, Z. Zhang, S. Li, et al., Appl. Catal. B: Environ. 185 (2016) 22–30.
doi: 10.1016/j.apcatb.2015.12.002
H.Y. Dong, Z.M. Qiang, J. Hu, C. Sans, Chem. Eng. J. 316 (2017) 288–295.
doi: 10.1016/j.cej.2017.01.099
X.X. Wang, Z.H. Wang, Y.Z. Tang, et al., Chem. Eng. J. 368 (2019) 999–1012.
doi: 10.1016/j.cej.2019.02.194
M.V. Alipázaga, N. Coichev, Anal. Lett. 36 (2003) 2255–2275.
doi: 10.1081/AL-120023717
X. Zhao, W. Wu, Y. Yan, Environ. Sci. Pollut. Res. 26 (2019) 24707–24719.
doi: 10.1007/s11356-019-05601-4
D. Zhou, Y. Yuan, S. Yang, H. Gao, L. Chen, J. Sulfur Chem. 36 (2015) 373–384.
doi: 10.1080/17415993.2015.1028939
J.P. Zhu, Y.L. Lin, T.Y. Zhang, et al., Chem. Eng. J. 367 (2019) 86–93.
doi: 10.1016/j.cej.2019.02.120
W.T. Shang, Z.J. Dong, M. Li, et al., Chem. Eng. J. 361 (2019) 1333–1344.
doi: 10.1016/j.cej.2018.12.139
Y. Gao, W. Fan, Z. Zhang, et al., J. Hazard. Mater. 426 (2022) 128114.
doi: 10.1016/j.jhazmat.2021.128114
T.W. Chan, N.J. Graham, W. Chu, J. Hazard. Mater. 181 (2010) 508–513.
doi: 10.1016/j.jhazmat.2010.05.043
J.A. Khan, X.X. He, N.S. Shah, et al., Chem. Eng. J. 252 (2014) 393–403.
doi: 10.1016/j.cej.2014.04.104
L. Zhou, C. Ferronato, J.M. Chovelon, M. Sleiman, C. Richard, Chem. Eng. J. 311 (2017) 28–36.
doi: 10.1016/j.cej.2016.11.066
Y. Guo, X. Lou, C. Fang, et al., Environ. Sci. Technol. 47 (2013) 11174–11181.
doi: 10.1021/es403199p
Y. Yang, J. Jiang, X. Lu, J. Ma, Y. Liu, Environ. Sci. Technol. 49 (2015) 7330–7339.
doi: 10.1021/es506362e
Y. Mao, H. Dong, S. Liu, L. Zhang, Z. Qiang, Water Res. 173 (2020) 115615.
doi: 10.1016/j.watres.2020.115615
C. Liang, Z.S. Wang, C.J. Bruell, Chemosphere 66 (2007) 106–113.
doi: 10.1016/j.chemosphere.2006.05.026
G.D. Fang, D.D. Dionysiou, D.M. Zhou, et al., Chemosphere 90 (2013) 1573–1580.
doi: 10.1016/j.chemosphere.2012.07.047
F.X. Tian, B. Xu, Y.L. Lin, et al., Water Res. 58 (2014) 198–208.
doi: 10.1016/j.watres.2014.03.069
L. Meng, S. Yang, C. Sun, et al., J. Hazard. Mater. 337 (2017) 34–46.
doi: 10.1016/j.jhazmat.2017.05.005
R. Chahboune, H. Mountacer, M. Sarakha, Rapid Commun. Mass Spectrom. 29 (2015) 1370–1380.
doi: 10.1002/rcm.7234
R.R. Singh, Y. Lester, K.G. Linden, et al., Environ. Sci. Technol. 49 (2015) 2983–2990.
doi: 10.1021/es505469h
S. Giannakis, M. Jovic, N. Gasilova, et al., J. Environ. Manage. 195 (2017) 174–185.
doi: 10.1016/j.jenvman.2016.07.004
J.L. Kormos, M. Schulz, H.P. Kohler, T.A. Ternes, Environ. Sci. Technol. 44 (2010) 4998–5007.
doi: 10.1021/es1007214
F.M. Wendel, C. Lutke Eversloh, E.J. Machek, et al., Environ. Sci. Technol. 48 (2014) 12689–12697.
doi: 10.1021/es503609s
A.R. Becker, L.A. Sternson, Proc. Natl. Acad. Sci. U. S. A. 78 (1981) 2003–2007.
doi: 10.1073/pnas.78.4.2003
X.L. Zou, T. Zhou, J. Mao, X.H. Wu, Chem. Eng. J. 257 (2014) 36–44.
doi: 10.1016/j.cej.2014.07.048
W.S. Chen, C.P. Huang, Chem. Eng. J. 266 (2015) 279–288.
doi: 10.1016/j.cej.2014.12.100
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
Huijuan Li , Zhu Wang , Jiagen Geng , Ruiping Song , Xiaoyin Liu , Chaochen Fu , Si Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138
Jinshuai Zheng , Junfeng Niu , Crispin Halsall , Yadi Guo , Peng Zhang , Linke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202
Yaxuan Jin , Chao Zhang , Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414
Nianhua Luo , Jiayi Jiang , Muhammad Suleman , Zhaowen Liu , Shuping Huang , Wei Xiao , Jie Wu , Jiapian Huang . Advances in radical Smiles rearrangement. Chinese Chemical Letters, 2026, 37(2): 111556-. doi: 10.1016/j.cclet.2025.111556
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Jindian Duan , Xiaojuan Ding , Pui Ying Choy , Binyan Xu , Luchao Li , Hong Qin , Zheng Fang , Fuk Yee Kwong , Kai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Hong-Qiang Dong , Shang-Bo Yu , Shu-Meng Wang , Jia-Hao Zhao , Xu-Guan Bai , Shi-Xing Lei , Zhen-Nan Tian , Jia Tian , Kang-Da Zhang , Lu Wang , Zhan-Ting Li , Shigui Chen . Construction of radical halogen-bonded organic frameworks with enhanced magnetism and conductivity. Chinese Chemical Letters, 2025, 36(8): 110730-. doi: 10.1016/j.cclet.2024.110730
Hui-Xian Jiang , Zhi-Tao Liu , Pei Xu , Xu Zhu . Synthetic application of oxalate salts for visible-light-induced radical transformations. Chinese Chemical Letters, 2025, 36(12): 111224-. doi: 10.1016/j.cclet.2025.111224
Saima Perveen , Lulu Qin , Min Zhao , Zhengwei Ding , Yingying Wang , Zaicheng Nie , Pengfei Li . Recent development in radical cycloaddition reactions for the synthesis of carbo- and heterocycles. Chinese Chemical Letters, 2026, 37(1): 111886-. doi: 10.1016/j.cclet.2025.111886
Quan Xu , Ye-Qing Du , Pan-Pan Chen , Yili Sun , Ze-Nan Yang , Hui Zhang , Bencan Tang , Hong Wang , Jia Li , Yue-Wei Guo , Xu-Wen Li . Computation assisted chemical study of photo-induced late-stage skeleton transformation of marine natural products towards new scaffolds with biological functions. Chinese Chemical Letters, 2025, 36(5): 110141-. doi: 10.1016/j.cclet.2024.110141
Jing-Qi Tao , Shuai Liu , Tian-Yu Zhang , Hong Xin , Xu Yang , Xin-Hua Duan , Li-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Shaofeng Gong , Zi-Wei Deng , Chao Wu , Wei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936
Chonglong He , Yulong Wang , Quan-Xin Li , Zichen Yan , Keyuan Zhang , Shao-Fei Ni , Xin-Hua Duan , Le Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253
Xiang Li , Beibei Zhang , Zhixiang Wang , Xiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383