Advances in application of sensors for determination of phthalate esters
-
* Corresponding authors.
E-mail addresses: csfutanyimin@126.com (Y. Tan), hndengyan@126.com (Y. Deng).
Citation:
Chuanxiang Zhang, Jie Zhou, Tingting Ma, Wenfei Guo, Dan Wei, Yimin Tan, Yan Deng. Advances in application of sensors for determination of phthalate esters[J]. Chinese Chemical Letters,
;2023, 34(4): 107670.
doi:
10.1016/j.cclet.2022.07.013
Y.M. Lee, J.E. Lee, W. Choe, et al., Environ. Int. 126 (2019) 635–643.
doi: 10.1016/j.envint.2019.02.059
J.L. Yang, Y.X. Li, Y. Wang, et al., TrAC-Trend. Anal. Chem. 72 (2015) 10–26.
doi: 10.1016/j.trac.2015.03.018
R.Y. Sun, H.S. Zhuang, Food Anal. Methods 8 (2015) 1990–1999.
doi: 10.1007/s12161-014-0085-3
M. Negev, T. Berman, S. Reicher, et al., Chemosphere 192 (2018) 217–224.
doi: 10.1016/j.chemosphere.2017.10.132
E. Fasano, F. Bono-Blay, T. Cirillo, et al., Food Control 27 (2012) 132–138.
doi: 10.1016/j.foodcont.2012.03.005
M. Jeddi, N. Rastkari, R. Ahmadkhaniha, M. Yunesian, Food Res. Int. 69 (2015) 256–265.
doi: 10.1016/j.foodres.2014.11.057
C.Y. Chen, A.V. Ghule, W.Y. Chen, et al., Appl. Surf. Sci. 231-232 (2004) 447–451.
doi: 10.1016/j.apsusc.2004.03.168
D. Gao, Z. Li, H. Wang, H. Liang, Sci. Total Environ. 645 (2018) 1400–1409.
doi: 10.1016/j.scitotenv.2018.07.093
X. Zheng, B.T. Zhang, Y. Teng, Sci. Total Environ. 476-477 (2014) 107–113.
doi: 10.1016/j.scitotenv.2013.12.111
K.K. Selvaraj, G. Sundaramoorthy, P.K. Ravichandran, et al., Environ. Geochem. Health 37 (2015) 83–96.
doi: 10.1007/s10653-014-9632-5
S. Orecchio, R. Indelicato, S. Barreca, J. Toxicol. Env. Heal. A 78 (2015) 1008–1018.
doi: 10.1080/15287394.2015.1021433
I. Ustun, S. Sungur, R. Okur, et al., Food Anal. Methods 8 (2014) 222–228.
V. Lo Turco, G. Di Bella, A.G. Potortì, et al., Eur. Food Res. Technol. 240 (2014) 451–458.
T. Li, P.H. Yin, L. Zhao, et al., Water Sci. Technol. 71 (2015) 183–190.
doi: 10.2166/wst.2014.485
S. Sampath, K.K. Selvaraj, G. Shanmugam, et al., Environ. Pollut. 221 (2017) 407–417.
doi: 10.1016/j.envpol.2016.12.003
M. Shi, Y.Y. Sun, Z.H. Wang, et al., Environ. Pollut. 250 (2019) 1–7.
doi: 10.1016/j.envpol.2019.03.064
N. Alkan, A. Alkan, J. Castro-Jimenez, et al., Sci. Total Environ. 760 (2021) 143412.
doi: 10.1016/j.scitotenv.2020.143412
L.L. Zhang, J.L. Liu, H.Y. Liu, et al., Ecotoxicology 24 (2015) 967–984.
doi: 10.1007/s10646-015-1446-4
T.C. Li, Y.C. Fan, D.S. Cun, et al., Front. Environ. Sci. Eng. 14 (2020) 139–149.
R.L. Li, J.B. Liang, Z.B. Gong, et al., Sci. Total Environ. 580 (2017) 388–397.
doi: 10.1016/j.scitotenv.2016.11.190
Y. Ait Bamai, C. Miyashita, A. Araki, et al., Sci. Total Environ. 618 (2018) 1408–1415.
doi: 10.1016/j.scitotenv.2017.09.270
G. Zaki, T. Shoeib, Sci. Total Environ. 618 (2018) 142–150.
doi: 10.1016/j.scitotenv.2017.10.337
Q. Yang, Z.D. Wen X.L. Huang, et al., J. Great. Lakes Res. 47 (2021) 437–446.
doi: 10.1016/j.jglr.2021.01.001
A. Paluselli, V. Fauvelle, N. Schmidt, et al., Sci. Total Environ. 621 (2018) 578–587.
doi: 10.1016/j.scitotenv.2017.11.306
W. Zhang, X. Li, C. Guo, J. Xu, Environ. Sci. Pollut. Res. 28 (2021) 25207–25217.
doi: 10.1007/s11356-021-12421-y
Y. Xu, Z.G. Song, X.P. Chang, et al., Ecotoxicol. Environ. Saf. 208 (2021) 111624.
doi: 10.1016/j.ecoenv.2020.111624
Z.P. Cheng, Y. Wang, B.T. Qiao, et al., Sci. Total Environ. 768 (2021) 144945.
doi: 10.1016/j.scitotenv.2021.144945
X.Y. Gao, J. Li, X.N. Wang, et al., Ecotoxicol. Environ. Saf. 171 (2019) 564–570.
doi: 10.1016/j.ecoenv.2019.01.001
M.M. Abdel daiem, J. Rivera-Utrilla, R. Ocampo-Perez, et al., J. Environ. Manage. 109 (2012) 164–178.
doi: 10.1016/j.jenvman.2012.05.014
X.T. Liu, C.F. Peng, Y.M. Shi, et al., Environ. Sci. Technol. 53 (2019) 1675–11683.
D. Kim, J.H. Kim, S.C. Seo, Sustainability 12 (2020) 6166.
doi: 10.3390/su12156166
L.Y. Wang, Y.Y. Gu, Z.M. Zhang, et al., Sci. Total Environ. 770 (2021) 144705.
doi: 10.1016/j.scitotenv.2020.144705
Q.Y. Zou, S.L. Hong, H.Y. Kang, et al., Sci. Rep. 10 (2020) 14625.
doi: 10.1038/s41598-020-71517-6
M. Minatoya, A. Araki, C. Miyashita, et al., Sci. Total Environ. 579 (2017) 606–611.
doi: 10.1016/j.scitotenv.2016.11.051
H. Q. Anh, H.M. N. Nguyen, T.Q. Do, et al., Sci. Total Environ. 760 (2021) 143380.
doi: 10.1016/j.scitotenv.2020.143380
A.K. Wesselink, V. Fruh, R. Hauser, et al., J. Expo. Sci. Env. Epidl. 31 (2021) 461–475.
doi: 10.1038/s41370-020-00270-9
S.S. Yalcin, I. Erdal, S. Cetinkaya, B. Oguz, Int. J. Environ. Health Res. 31 (2021) 1–14.
doi: 10.1080/09603123.2019.1625032
D. Salazar-Beltrán, L. Hinojosa-Reyes, E. Ruiz-Ruiz, et al., Food Anal. Methods 11 (2017) 48–61.
H.J. Heo, M.J. Choi, J.K. Park, et al., Water 12 (2019) 122.
doi: 10.3390/w12010122
X. Li, W.P. Zhang, J.P. Lv, et al., Environ. Sci. Eur. 33 (2021) 19.
doi: 10.1186/s12302-021-00457-3
B. Prasad, Environ. Sci. : Proc. Imp. 23 (2021) 389–399.
X.G. Zhao, H.Y. Jin, D.H. Li, et al., Mar. Pollut. Bull. 160 (2020) 111667.
doi: 10.1016/j.marpolbul.2020.111667
D.C. Wu, X.L. Chen, F. Liu, et al., Microchem. J. 159 (2020) 105563.
doi: 10.1016/j.microc.2020.105563
H. Chen, W. Mao, Y.Q. Shen, et al., Environ. Sci. Pollut. Res. 26 (2019) 24609–24619.
doi: 10.1007/s11356-019-05259-y
S. Singh, S.S. Li, Int. J. Mol. Sci. 13 (2012) 10143–10153.
doi: 10.3390/ijms130810143
Q.Y. Shi, J.C. Tang, L. Wang, et al., Ecotoxicol. Environ. Saf. 213 (2021) 112041.
doi: 10.1016/j.ecoenv.2021.112041
J. Chi, H.T. Zhang, D.X. Zhao, Mar. Pollut. Bull. 162 (2021) 111881.
doi: 10.1016/j.marpolbul.2020.111881
A. Ranjbar Jafarabadi, M. Dashtbozorg, E. Raudonyte-Svirbutaviciene, et al., Sci. Total Environ. 775 (2021) 145822.
doi: 10.1016/j.scitotenv.2021.145822
G. Bolat, Y.T. Yaman, S. Abaci, Sens. Actuators B: Chem. 299 (2019) 127000.
doi: 10.1016/j.snb.2019.127000
A. Estevez-Danta, R. Rodil, B. Perez-Castano, et al., Talanta 224 (2021) 121912.
doi: 10.1016/j.talanta.2020.121912
N. Yue, C. Deng, C.M. Li, et al., J. Agr. Food Chem. 68 (2020) 6910–6918.
doi: 10.1021/acs.jafc.9b07643
Y. Kudo, K. Obayashi, H. Yanagisawa, et al., J. Chromatogra. A 1602 (2019) 441–449.
doi: 10.1016/j.chroma.2019.06.014
S. Keresztes, E. Tatar, Z. Czegeny, et al., Sci. Total Environ. 458-460 (2013) 451–458.
doi: 10.1016/j.scitotenv.2013.04.056
O.H. Fred-Ahmadu, O.O. Ayejuyo, N.U. Benson, Data Brief 31 (2020) 105755.
doi: 10.1016/j.dib.2020.105755
R.Y. Sun, H.S. Zhuang, Anal. Biochem. 480 (2015) 49–57.
doi: 10.1016/j.ab.2015.04.010
R. Cariou, F. Larvor, F. Monteau, et al., Food Chem. 196 (2016) 211–219.
doi: 10.1016/j.foodchem.2015.09.045
Y. Liu, Y.X. Lai, G.J. Yang, et al., J. Biomed. Nanotechnol. 13 (2017) 1253–1259.
doi: 10.1166/jbn.2017.2424
H. Shi, T. Jin, J.W. Zhang, et al., Chin. Chem. Lett. 31 (2020) 155–158.
doi: 10.1016/j.cclet.2019.06.020
Y.J. Tang, Z.Y. Li, N.Y. He, et al., J. Biomed. Nanotechnol. 9 (2013) 312–317.
doi: 10.1166/jbn.2013.1493
Y. Liu, Y. Deng, H.M. Dong, et al., Sci. China Chem. 60 (2017) 329–337.
doi: 10.1007/s11426-016-0253-2
L. He, H.W. Yang, P.F. Xiao, et al., J. Biomed. Nanotechnol. 13 (2017) 1243–1252.
doi: 10.1166/jbn.2017.2422
M. Liu, A. Khan, Z.F. Wang, et al., Biosens. Bioelectron. 130 (2019) 174–184.
doi: 10.1016/j.bios.2019.01.006
N. Jaffrezic-Renault, J. Kou, D. Tan, Z.Z. Guo, Anal. Bioanal. Chem. 412 (2020) 5913–5923.
doi: 10.1007/s00216-020-02516-9
X.B. Mou, Z. Chen, T.T. Li, et al., J. Biomed. Nanotechnol. 15 (2019) 1832–1838.
doi: 10.1166/jbn.2019.2802
S.I. Kaya, A. Cetinkaya, N. K. Bakirhan, S.A. Ozkan, Trends Environ. Anal. Chem. 28 (2020) e100106.
Z.Y. Li, J.H. Wang, H.W. Yang, et al., J. Biomed. Nanotechnol. 13 (2017) 1272–1280.
doi: 10.1166/jbn.2017.2426
H. Xie, K.L. Di, R.R. Huang, et al., Chin. Chem. Lett. 31 (2020) 1737–1745.
doi: 10.1016/j.cclet.2020.02.049
H.W. Yang, W.B. Liang, J. Si, et al., J. Biomed. Nanotechnol. 10 (2014) 3610–3619.
doi: 10.1166/jbn.2014.2047
C.L. Tang, Z.Y. He, H.M. Liu, et al., J. Nanobiotechnol. 18 (2020) 62.
doi: 10.1186/s12951-020-00613-6
Y. Deng, W. Wang, C. Ma, Z.Y. Li, J. Biomed. Nanotechnol. 9 (2013) 1378–1382.
doi: 10.1166/jbn.2013.1633
G.J. Yang, Y.X. Lai, Z.Q. Xiao, et al., Chin. Chem. Lett. 29 (2018) 1857–1860.
doi: 10.1016/j.cclet.2018.11.030
Y. Deng, W. Wang, L.M. Zhang, et al., J. Biomed. Nanotechnol. 9 (2013) 318–321.
doi: 10.1166/jbn.2013.1487
J. Liu, S.A. Dong, Q.G. He, et al., Biomolecules 9 (2019) 245.
doi: 10.3390/biom9060245
Y.X. Lai, L.J. Wang, Y. Liu, et al., J. Biomed. Nanotechnol. 14 (2018) 44–65.
doi: 10.1166/jbn.2018.2505
W. Wang, Y. Deng, S. Li, et al., J. Biomed. Nanotechnol. 9 (2013) 736–740.
doi: 10.1166/jbn.2013.1577
Y.H. Zhang, Y.N. Lei, H. Lu, et al., Food Chem. 346 (2021) 128895.
doi: 10.1016/j.foodchem.2020.128895
Y. Liu, T.T. Li, C.X. Ling, et al., Chin. Chem. Lett. 30 (2019) 2211–2215.
doi: 10.1016/j.cclet.2019.05.020
X.Z. Feng, X.R. Su, A. Ferranco, et al., J. Biomed. Nanotechnol. 16 (2020) 29–39.
doi: 10.1166/jbn.2020.2879
Q. Wang, Q. Xue, T. Chen, et al., Chin. Chem. Lett. 32 (2021) 609–619.
doi: 10.1016/j.cclet.2020.10.025
Q.G. He, J. Liu, X.P. Liu, et al., Colloids Surf. B 172 (2018) 565–572.
doi: 10.1016/j.colsurfb.2018.09.005
Q.G. He, Y.L. Tian, Y.Y. Wu, et al., Biomolecules 9 (2019) 176.
doi: 10.3390/biom9050176
G.J. Yang, H. Huang, Z.Q. Xiao, et al., J. Biomed. Nanotechnol. 16 (2020) 548–552.
doi: 10.1166/jbn.2020.2909
A. Khanmohammadi, A.J. Ghazizadeh, P. Hashemi, et al., J. Iran. Chem. Soc. 17 (2020) 2429–2447.
doi: 10.1007/s13738-020-01940-z
Z.Y. Xu, X.X. Jiang, S.P. Liu, M.H. Yang, Chin. Chem. Lett. 31 (2020) 185–188.
doi: 10.1016/j.cclet.2019.04.026
Y. Liu, Y. Deng, T.T. Li, et al., J. Biomed. Nanotechnol. 14 (2018) 2156–2161.
doi: 10.1166/jbn.2018.2655
Z.X. Shi, G.K. Li, Y.F. Hu, Chin. Chem. Lett. 30 (2019) 1600–1606.
doi: 10.1016/j.cclet.2019.04.066
Q.G. He, J. Liu, X.P. Liu, et al., Electrochim. Acta 296 (2019) 683–692.
doi: 10.1016/j.electacta.2018.11.096
Y.L. Fang, H.R. Liu, Y. Wang, et al., J. Biomed. Nanotechnol. 17 (2021) 407–415.
doi: 10.1166/jbn.2021.3028
H. Chen, Y.Q. Wu, Z. Chen, et al., J. Biomed. Nanotechnol. 13 (2017) 1619–1630.
doi: 10.1166/jbn.2017.2478
Q.K. Zeng, X.L. Qi, M.Y. Zhang, et al., Int J. Biol. Macromol. 145 (2020) 1049–1058.
doi: 10.1016/j.ijbiomac.2019.09.197
J. Fu, Z. Dang, Y. Deng, et al., J. Biomed. Nanotechnol. 8 (2012) 669–675.
doi: 10.1166/jbn.2012.1427
Z.L. Ding, Y.L. Wang, Q. Zhou, et al., Biomolecules 10 (2019) 68.
doi: 10.3390/biom10010068
F. Li, Z.F. Wang, Y.F. Huang, et al., J. Biomed. Nanotechnol. 11 (2015) 1776–1782.
doi: 10.1166/jbn.2015.2151
M.A.A. Shah, N.Y. He, Z.Y. Li, et al., J. Biomed. Nanotechnol. 10 (2014) 2332–2349.
doi: 10.1166/jbn.2014.1981
Y.Y. Wu, P.H. Deng, Y.L. Tian, et al., J. Nanobiotechnol. 18 (2020) 112.
doi: 10.1186/s12951-020-00672-9
F. Magesa, Y.Y. Wu, S.A. Dong, et al., Biomolecules 10 (2020) 110.
doi: 10.3390/biom10010110
Y.J. Li, H.P. Dai, N.N. Feng, et al., Mater. Express. 9 (2019) 59–64.
doi: 10.1166/mex.2019.1470
H.W. Yang, M. Liu, H.R. Jiang, et al., J. Biomed. Nanotechnol. 13 (2017) 655–664.
doi: 10.1166/jbn.2017.2386
L.M. Zhang, K. Xia, Y.Y. Bai, et al., J. Biomed. Nanotechnol. 10 (2014) 1440–1449.
doi: 10.1166/jbn.2014.1932
Y.X. Liu, S. Zhang, X. Ren, et al., RSC Adv. 5 (2015) 57346–57353.
doi: 10.1039/C5RA07397A
A.I. Zia, A.R.M. Syaifudin, S.C. Mukhopadhyay, et al., J. Phys. Conf. Ser. 439 (2013) 012026.
doi: 10.1088/1742-6596/439/1/012026
Y.R. Liang, Z.M. Zhang, Z.J. Liu, et al., Biosens. Bioelectron. 91 (2017) 199–202.
doi: 10.1016/j.bios.2016.12.007
B.S. He, J.W. Li, Rare Met. 40 (2021) 1099–1109.
doi: 10.1007/s12598-020-01580-5
L.J. Xu, J.J. Du, Y. Deng, et al., J. Biomed. Nanotechnol. 8 (2012) 1006–1011.
doi: 10.1166/jbn.2012.1456
X.J. Li, J.F. Ping, Y.B. Ying, TrAC-Trend. Anal. Chem. 113 (2019) 1–12.
doi: 10.1016/j.trac.2019.01.008
S.Q. Xiong, J.J. Cheng, L.L. He, et al., Anal. Methods 6 (2014) 1736–1742.
doi: 10.1039/c3ay42039f
S.Q. Xiong, J.J. Cheng, L.L. He, et al., J. Electroanal. Chem. 743 (2015) 18–24.
doi: 10.1016/j.jelechem.2015.02.013
F.J. Xiao, M.Y. Guo, J.Z. Wang, et al., Anal. Chim. Acta 1043 (2018) 35–44.
doi: 10.1016/j.aca.2018.08.046
F.J. Xiao, X.R. Yan, H.L. Li, et al., Sens. Actuators B: Chem. 288 (2019) 476–485.
doi: 10.1016/j.snb.2019.03.037
X.Y. Jiang, Y.Q. Xie, D.J. Wan, et al., Sensors 20 (2020) 901.
doi: 10.3390/s20030901
J. Annamalai, N. Vasudevan, et al., Anal. Chim. Acta 1135 (2020) 175–186.
doi: 10.1016/j.aca.2020.09.041
J.W. Li, H.L. Jin, M. Wei, et al., Sens. Actuators B: Chem. 331 (2021) 129401.
doi: 10.1016/j.snb.2020.129401
Y.X. Lai, C.X. Zhang, Y. Deng, et al., Chin. Chem. Lett. 30 (2019) 160–162.
doi: 10.1016/j.cclet.2018.07.011
Y.Y. Wu, P.H. Deng, Y.L. Tian, et al., Bioelectrochemistry 131 (2020) 107393.
doi: 10.1016/j.bioelechem.2019.107393
Y.L. Tian, P.H. Deng, Y.Y. Wu, et al., Biomolecules 9 (2019) 294.
doi: 10.3390/biom9070294
Y.X. Lai, Y. Deng, G.J. Yang, et al., J. Biomed. Nanotechnol. 14 (2018) 1688–1694.
doi: 10.1166/jbn.2018.2617
D.R. Kumar, G. Dhakal, V.Q. Nguyen, J.J. Shim, Anal. Chim. Acta 1141 (2021) 71–82.
doi: 10.1016/j.aca.2020.10.014
J. Wackerlig, R. Schirhagl, Anal. Chem. 88 (2016) 250–261.
doi: 10.1021/acs.analchem.5b03804
T. Wu, X.P. Wei, X.H. Ma, J.P. Li, Microchim. Acta 184 (2017) 2901–2907.
doi: 10.1007/s00604-017-2281-5
X.Q. Li, L. Zhong, R.L. Liu, et al., Microchim. Acta 186 (2019) 688.
doi: 10.1007/s00604-019-3812-z
M. Panagiotopoulou, S. Kunath, P.X. Medina-Rangel, et al., Biosens. Bioelectron. 88 (2017) 85–93.
doi: 10.1016/j.bios.2016.07.080
J.J. BelBruno, Chem. Rev. 119 (2019) 94–119.
doi: 10.1021/acs.chemrev.8b00171
M. Yoshikawa, K. Tharpa, S.O. Dima, Chem. Rev. 116 (2016) 11500–11528.
doi: 10.1021/acs.chemrev.6b00098
A.I. Zia, S.C. Mukhopadhyay, P.L. Yu, et al., Biosens. Bioelectron. 67 (2015) 342–349.
doi: 10.1016/j.bios.2014.08.050
A. Adumitrăchioaie, M. Tertis, A. Cernat, et al., Int. J. Electrochem. Sci. 13 (2018) 2556–2576.
R.G. Gui, H. Jin, H.J. Guo, Z.H. Wang, Biosens. Bioelectron. 100 (2018) 56–70.
doi: 10.1016/j.bios.2017.08.058
J. He, R.H. Lv, J. Zhu, K. Lu, Anal, Chim. Acta 661 (2010) 215–221.
doi: 10.1016/j.aca.2009.12.029
I. Tabushi, K. Kurihara, K. Naka, et al., Tetrahedron Lett. 28 (1987) 4299–4302.
doi: 10.1016/S0040-4039(00)96490-6
K. Haupt, P.X. Medina Rangel, B.T.S. Bui, Chem. Rev. 120 (2020) 9554–9582.
doi: 10.1021/acs.chemrev.0c00428
S. Venkatesh, C.C. Yeung, Q.J. Sun, et al., Sens. Actuators B: Chem. 259 (2018) 650–657.
doi: 10.1016/j.snb.2017.12.107
X. Zhao, X. Ju, S. Qiu, et al., Russ. J. Electrochem. 54 (2018) 636–643.
doi: 10.1134/S1023193518080074
Z.H. Zhang, L.J. Luo, R. Cai, H.J. Chen, Biosens. Bioelectron. 49 (2013) 367–373.
doi: 10.1016/j.bios.2013.05.054
Y. Li, J.J. Kang, X.Y. Zhao, et al., Chem. J. Chin. Univ. 40 (2019) 448–455.
Q.T. Zhou, M. Guo, S.C. Wu, et al., J. Electroanal. Chem. 897 (2021) 115549.
doi: 10.1016/j.jelechem.2021.115549
L. Li, L.L. Yang, Z.L. Xing, et al., Analyst 138 (2013) 6962–6968.
doi: 10.1039/c3an01435e
C.X. Lu, Z.G. Tang, X.X. Gao, et al., Microchim. Acta 185 (2018) 373.
doi: 10.1007/s00604-018-2892-5
L.X. Chen, S.F. Xu, J. H. Li, Chem. Soc. Rev. 40 (2011) 2922–2942.
doi: 10.1039/c0cs00084a
T. Fan, W.M. Yang, N.W. Wang, et al., J. Appl. Polym. Sci. 133 (2016) 43484.
W.Z. Xu, X.M. Zhang, W.H. Huang, et al., Appl. Surf. Sci. 426 (2017) 1075–1083.
doi: 10.1016/j.apsusc.2017.07.241
X.J. Li, X.J. Wang, L.L. Li, et al., Talanta 131 (2015) 354–360.
doi: 10.1016/j.talanta.2014.07.028
Q.W. Chen, C. Yuan, C.Y. Zhai, et al., Chin. Chem. Lett. 33 (2022) 983–986.
doi: 10.1016/j.cclet.2021.07.047
P.W. Gao, Y.Z. Shen, C. Ma, et al., Analyst 146 (2021) 6178.
doi: 10.1039/D1AN01348C
Y.J. Tang, H.N. Liu, H. Chen, et al., J. Biomed. Nanotechnol. 16 (2020) 763–788.
doi: 10.1166/jbn.2020.2943
L. He, R.R. Huang, P.F. Xiao, et al., Chin. Chem. Lett. 32 (2021) 1593–1602.
doi: 10.1016/j.cclet.2020.12.054
W.F. Guo, C.X. Zhang, T.T. Ma, et al., J. Nanobiotechnol. 19 (2021) 166.
doi: 10.1186/s12951-021-00914-4
X.B. Mou, D.N. Sheng, Z. Chen, et al., J. Biomed. Nanotechnol. 15 (2019) 2393–2400.
doi: 10.1166/jbn.2019.2862
R.R. Huang, Z.S. Chen, M. Liu, et al., Sci. China Chem. 60 (2017) 786–792.
G.J. Yang, Y. Liu, Y. Deng, et al., J. Biomed. Nanotechnol. 17 (2021) 2240–2246.
doi: 10.1166/jbn.2021.3191
X.B. Mou, T.T. Li, J.H. Wang, et al., J. Biomed. Nanotechnol. 11 (2015) 2057–2066.
doi: 10.1166/jbn.2015.2113
K. Ikebukuro, C. Kiyohara, K. Sode, Anal. Lett. 37 (2004) 2901–2909.
doi: 10.1081/AL-200035778
M. Liu, L. Xi, T. Tan, et al., Chin. Chem. Lett. 32 (2021) 1726–1730.
doi: 10.1016/j.cclet.2020.11.072
H.N. Liu, H.M. Dong, Z. Chen, et al., J. Biomed. Nanotechnol. 13 (2017) 1333–1343.
doi: 10.1166/jbn.2017.2418
M. Liu, X.C. Yu, Z. Chen, et al., J. Nanobiotechnol. 15 (2017) 81.
doi: 10.1186/s12951-017-0311-4
C. Ma, C.Y. Li, F. Wang, et al., J. Biomed. Nanotechnol. 9 (2013) 703–709.
doi: 10.1166/jbn.2013.1566
S.I. Kaya, A. Cetinkaya, S.A. Ozkan, Crit. Rev. Anal. Chem. 51 (2021) 1–21.
doi: 10.1080/10408347.2019.1666249
Z.M. Li, Y. Yu, Z.L. Li, T. Wu, Anal. Bioanal. Chem. 407 (2015) 2711–2726.
doi: 10.1007/s00216-015-8530-8
A.S. Sadeghi, N. Ansari, M. Ramezani, et al., Biosens. Bioelectron. 118 (2018) 137–152.
doi: 10.1016/j.bios.2018.07.045
Z. Li, M.A. Mohamed, A.M. Vinu Mohan, et al., Sensors 19 (2019) 5435.
doi: 10.3390/s19245435
Y. Han, D.L. Diao, Z.W. Lu, et al., Anal. Chem. 89 (2017) 5270–5277.
doi: 10.1021/acs.analchem.6b04808
X. Wu, D.L. Diao, Z.W. Lu, et al., JoVE-J. Vis. Exp. 133 (2018) 56814.
Q. Lu, X.X. Liu, J.J. Hou, et al., Molecules 25 (2020) 747.
doi: 10.3390/molecules25030747
Y.Z. Shen, J. Guan, C. Ma, et al., Anal. Chem. 94 (2022) 1742–1751.
doi: 10.1021/acs.analchem.1c04348
L.B. Nie, F.H. Liu, P. Ma, X.Y. Xiao, J. Biomed. Nanotechnol. 10 (2014) 2700–2721.
doi: 10.1166/jbn.2014.1987
Y. Liu, T.T. Li, C.X. Ling, et al., Chin. Chem. Lett. 30 (2019) 2359–2362.
doi: 10.1016/j.cclet.2019.10.033
L. Gong, L. Zhao, M.D. Tan, et al., J. Biomed. Nanotechnol. 17 (2021) 509–528.
doi: 10.1166/jbn.2021.3052
N. Yan, J.L. Song, F.Y. Wang, et al., Chin. Chem. Lett. 30 (2019) 1984–1988.
doi: 10.1016/j.cclet.2019.09.039
Z.Y. He, Z.R. Tong, B.Y. Tan, et al., J. Biomed. Nanotechnol. 17 (2021) 1364–1370.
doi: 10.1166/jbn.2021.3111
H.L. Zhang, P.F. Xu, X.T. Zhang, et al., Chin. Chem. Lett. 31 (2020) 1083–1086.
doi: 10.1016/j.cclet.2019.10.005
H.M. Hu, L.L. Fan, X.J. Li, et al., J. Pharmaceut. Biomed. 75 (2013) 123–129.
doi: 10.1016/j.jpba.2012.11.010
S. Li, H.N. Liu, Y.Y. Jia, et al., J. Biomed. Nanotechnol. 9 (2013) 689–698.
doi: 10.1166/jbn.2013.1568
B. Liu, Y.Y. Jia, M. Ma, et al., J. Biomed. Nanotechnol. 9 (2013) 247–256.
doi: 10.1166/jbn.2013.1483
H. Yanagisawa, S. Fujimaki, Anal. Sci. 35 (2019) 1215–1219.
doi: 10.2116/analsci.19P165
B.J. Johnson, A.P. Malanoski, J.S. Erickson, Sensors 20 (2020) 5857.
doi: 10.3390/s20205857
R. Bala, R.K. Sharma, N. Wangoo, Anal. Bioanal. Chem. 408 (2016) 333–338.
doi: 10.1007/s00216-015-9085-4
K. Akshaya, C. Arthi, A.J. Pavithra, et al., Photodiagn. Photodyn. 30 (2020) 101699.
doi: 10.1016/j.pdpdt.2020.101699
S. Sun, S.H. Qian, J.P. Zheng, et al., Analyst 145 (2020) 6968–6973.
doi: 10.1039/D0AN01496F
H. Ahmadi, S. Keshipour, F. Ahour, Sci. Rep. 10 (2020) 14185.
doi: 10.1038/s41598-020-70821-5
L.H. Wu, S.L. Yao, H. Xu, et al., Chin. Chem. Lett. 33 (2022) 541–546.
doi: 10.1016/j.cclet.2021.06.009
J.X. Zhao, Z.W. Lu, S. Wang, et al., Anal. Chem. 93 (2021) 4317–4325.
doi: 10.1021/acs.analchem.0c05320
Y. Liu, G.J. Yang, T.T. Li, et al., Chin. Chem. Lett. 32 (2021) 1957–1962.
doi: 10.1016/j.cclet.2021.01.016
R.H. Guo, C.C. Shu, K.J. Chuang, G.B. Hong, Mater. Lett. 293 (2021) 129756.
doi: 10.1016/j.matlet.2021.129756
Y.M. Yan, Y. Qu, R. Du, et al., Anal. Methods 13 (2021) 5179.
doi: 10.1039/D1AY01464A
Y.T. Qin, Y. Wan, J. Guo, M.T. Zhao, Chin. Chem. Lett. 33 (2022) 693–702.
doi: 10.1016/j.cclet.2021.07.013
N.F. Zhu, Y.M. Zou, M.L. Huang, et al., Talanta 186 (2018) 104–109.
doi: 10.1016/j.talanta.2018.04.023
Z.W. Qiu, Y.T. Xue, J.Y. Li, et al., Chin. Chem. Lett. 32 (2021) 2807–2811.
doi: 10.1016/j.cclet.2021.02.029
M. Zhang, Y.Q. Liu, B.C. Ye, Chem. Commun. 47 (2011) 11849–11851.
doi: 10.1039/c1cc14772b
D. Seol, D. Jang, J.W. Oh, et al., Environ. Res. 170 (2019) 238–242.
doi: 10.1016/j.envres.2018.12.030
Y.F. Kang, L. Zhang, Q.H. Lai, et al., Polym-Plast. Tech. Mat. 60 (2021) 60–69.
T.T. Li, H. Yi, Y. Liu, et al., J. Biomed. Nanotechnol. 14 (2018) 150–160.
doi: 10.1166/jbn.2018.2491
L. Yu, Y.M. Qiao, L.X. Miao, et al., Chin. Chem. Lett. 29 (2018) 1545–1559.
doi: 10.1016/j.cclet.2018.09.005
J.Y. Lu, J.X. Wang, Y. Li, et al., Sens. Actuators B: Chem. 331 (2021) 129396.
doi: 10.1016/j.snb.2020.129396
H.R. Jiang, X. Zeng, Z.J. Xi, et al., J. Biomed. Nanotechnol. 9 (2013) 674–684.
doi: 10.1166/jbn.2013.1575
D.R. Cao, H. Meier, Chin. Chem. Lett. 30 (2019) 1758–1766.
doi: 10.1016/j.cclet.2019.06.026
W. Wei, J. Wang, C.B. Tian, et al., Analyst 143 (2018) 5481–5486.
doi: 10.1039/C8AN01606B
J.M. Yan, Y.N. Lu, S.W. Xie, et al., J. Biomed. Nanotechnol. 17 (2021) 312–321.
doi: 10.1166/jbn.2021.3034
T. Li, Z.K. Gao, N.W. Wang, et al., RSC Adv. 6 (2016) 54615–54622.
doi: 10.1039/C6RA04663K
S. Chen, J.L. Fu, S. Zhou, et al., Food Chem. 367 (2022) 130505.
doi: 10.1016/j.foodchem.2021.130505
W.Z. Xu, T. Li, W.H. Huang, et al., RSC Adv. 7 (2017) 51632–51639.
doi: 10.1039/C7RA09145A
Y.Y. Wang, Z.P. Zhou, W.Z. Xu, et al., Polym. Int. 67 (2018) 1003–1010.
doi: 10.1002/pi.5596
Z.P. Zhou, T. Li, W.Z. Xu, et al., Sens. Actuators B: Chem. 240 (2017) 1114–1122.
doi: 10.1016/j.snb.2016.09.092
X.M. Wang, C. Chen, Y.F. Chen, et al., Food Agr. Immunol. 31 (2020) 813–826.
doi: 10.1080/09540105.2020.1774746
Y.Y. Wang, W.T. Li, X.T. Hu, et al., Food Chem. 352 (2021) 129352.
doi: 10.1016/j.foodchem.2021.129352
H.J. Lim, A.R. Kim, M.Y. Yoon, Biosens. Bioelectron. 121 (2018) 1–9.
doi: 10.1016/j.bios.2018.08.065
J. Dolai, H. Ali, N.R. Jana, New J. Chem. 45 (2021) 19088.
doi: 10.1039/D1NJ04169J
C.K. Qiu, Y.J. Gong, Y.X. Guo, et al., Anal. Chem. 91 (2019) 13355–13359.
doi: 10.1021/acs.analchem.9b04277
B. Cromwell, M. Dubnicka, S. Dubrawski, et al., ACS Omega 4 (2019) 17009–17015.
doi: 10.1021/acsomega.9b02585
Y. Zhou, Z.F. Wang, Y.L. Peng, et al., J. Biomed. Nanotechnol. 17 (2021) 744–770.
doi: 10.1166/jbn.2021.3075
Y.S. Chen, S.L. Cheng, A.M. Zhang, et al., J. Biomed. Nanotechnol. 14 (2018) 1773–1784.
doi: 10.1166/jbn.2018.2621
J. Wang, Y.R. Zhou, Q.Q. Wang, et al., Chin. J. Anal. Chem. 48 (2020) 1625–1632.
Z.W. Zuo, K. Zhu, L.X. Ning, et al., Appl. Surf. Sci. 325 (2015) 45–51.
doi: 10.1016/j.apsusc.2014.10.181
Y.P. Wu, W.F. Yu, B.H. Yang, P. Li, Analyst 143 (2018) 2363–2368.
doi: 10.1039/C8AN00540K
Q. Cao, R.C. Che, ACS Appl. Mater. Interfaces 6 (2014) 7020–7027.
doi: 10.1021/am501898u
X.Y. Hu, X.R. Wang, Z.P. Ge, et al., Analyst 144 (2019) 3861–3869.
doi: 10.1039/C9AN00251K
Q.Q. Wang, J. Wang, M. Li, et al., Spectrochim. Acta A 248 (2021) 119131.
doi: 10.1016/j.saa.2020.119131
Y. Xiang, M.H. Li, X.Y. Guo, et al., Sens. Actuators B: Chem. 262 (2018) 44–49.
doi: 10.1016/j.snb.2018.01.196
J.N. Liu, J.Y. Li, F. Li, et al., Anal. Bioanal. Chem. 410 (2018) 5277–5285.
doi: 10.1007/s00216-018-1184-6
A. Aarthi, M. Umadevi, R. Parimaladevi, G.V. Sathe, J. Mol. Liq. 252 (2018) 97–102.
doi: 10.1016/j.molliq.2017.12.103
Q. An, P. Zhang, J.M. Li, Nanoscale 4 (2012) 5210–5216.
doi: 10.1039/c2nr31061a
Y.R. Zhou, J.Y. Li, L. Zhang, et al., Anal. Bioanal. Chem. 411 (2019) 5691–5701.
doi: 10.1007/s00216-019-01947-3
D.D. Tu, J.T. Garza, G.L. Cote, RSC Adv. 9 (2019) 2618–2625.
doi: 10.1039/C8RA09230C
Y.Y. Yang, Y.T. Li, X.J. Li, et al., Chem. Eng. J. 402 (2020) 125179.
doi: 10.1016/j.cej.2020.125179
Y.Y. Yang, Y.T. Li, W.L. Zhai, et al., Anal. Chem. 93 (2021) 946–955.
doi: 10.1021/acs.analchem.0c03652
J.Y. Li, X.Y. Hu, Y.R. Zhou, et al., ACS Appl. Nano Mater. 2 (2019) 2743–2751.
doi: 10.1021/acsanm.9b00258
Y.W. Rong, S.J. Ali, Q. Ouyang, et al., J. Food Compos. Anal. 100 (2021) 103929.
doi: 10.1016/j.jfca.2021.103929
D.Q. Chen, X.Y. Sun, K.H. Zhang, et al., Sensors 17 (2017) 1681.
M. Tang, Y.F. Wu, D.L. Deng, et al., Sens. Actuators B: Chem. 258 (2018) 304–312.
doi: 10.1016/j.snb.2017.11.120
S. Mohammadi, A.V. Nadaraja, D.J. Roberts, et al., Sens. Actuators A: Phys. 303 (2020) 111663.
doi: 10.1016/j.sna.2019.111663
Zhaoyu Liu , Dan Wang , Guohui Liu , Huili Zhang , He Li , Xiaoju Li , Ruihu Wang . Sound-Bioinspired Dual-Conductive Hydrogel Sensors for High Sensitivity and Environmental Weatherability. Chinese Journal of Structural Chemistry, 2025, 44(8): 100628-100628. doi: 10.1016/j.cjsc.2025.100628
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Huili Zhao , Xiao Tan , Huining Chai , Lin Hu , Hongbo Li , Lijun Qu , Xueji Zhang , Guangyao Zhang . Recent advances in conductive MOF-based electrochemical sensors. Chinese Chemical Letters, 2025, 36(8): 110571-. doi: 10.1016/j.cclet.2024.110571
Menglin Zhou , Lin Zhang , Xuefei Shan , Fengqin Chang , Wentong Chen , Xuguang An , Guangzhi Hu . Hydrangea-like B/N co-doped carbon-based electrochemical sensors for the efficient and sensitive detection of aristolochic acid in Aristolochia. Chinese Chemical Letters, 2025, 36(12): 111073-. doi: 10.1016/j.cclet.2025.111073
Zeqiu Chen , Limiao Cai , Jie Guan , Zhanyang Li , Hao Wang , Yaoguang Guo , Xingtao Xu , Likun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
Yuqing Zhong , Mengmeng Jiang , Deyong Yang , Nan Feng , Ying Sun , Huimin Wang , Feng Zhou . Nickel-catalyzed electrochemical carboxylation of propargylic esters with CO2 to 2,3-allenoic acids. Chinese Chemical Letters, 2025, 36(12): 111169-. doi: 10.1016/j.cclet.2025.111169
Fozia Nazir , Syeda Sundas Musawar , Ashfaq Ahmad Khan , Bilal Akram , Farid Ahmed . Chromogenic and fluorogenic Schiff base sensors. Chinese Journal of Structural Chemistry, 2025, 44(12): 100751-100751. doi: 10.1016/j.cjsc.2025.100751
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
Lin Guo , Rui Xu , Denys Makarov . Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics. Chinese Journal of Structural Chemistry, 2025, 44(2): 100428-100428. doi: 10.1016/j.cjsc.2024.100428
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Zhongxiong Sun , Haili Song , Mei-Huan Zhao , Yijie Zeng , Man-Rong Li . Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure. Chinese Journal of Structural Chemistry, 2025, 44(2): 100429-100429. doi: 10.1016/j.cjsc.2024.100429