Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma
-
* Corresponding author.
E-mail address: p.zhang6@szu.edu.cn (P. Zhang).
Citation:
Shuangling Luo, Chao Liang, Qianling Zhang, Pingyu Zhang. Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma[J]. Chinese Chemical Letters,
;2023, 34(4): 107666.
doi:
10.1016/j.cclet.2022.07.009
T. Akinyemiju, S. Abera, M. Ahmed, et al., JAMA Oncol. 3 (2017) 1683–1691.
doi: 10.1001/jamaoncol.2017.3055
Y. Sun, L. Wu, Y. Zhong, et al., Cell 184 (2021) 404–421.
doi: 10.1016/j.cell.2020.11.041
A.S. Kekule, U. Lauer, M. Meyer, et al., Nature 343 (1990) 457–461.
doi: 10.1038/343457a0
R. Rudalska, D. Dauch, T. Longerich, et al., Nat. Med. 20 (2014) 1138–1146.
doi: 10.1038/nm.3679
J.M. Llovet, S. Ricci, V. Mazzaferro, et al., N. Engl. J. Med. 359 (2008) 378–390.
doi: 10.1056/NEJMoa0708857
M.M. Gounder, M.R. Mahoney, B.A. Van Tine, et al., N. Engl. J. Med. 379 (2018) 2417–2428.
doi: 10.1056/NEJMoa1805052
C. Wang, S. Vegna, H. Jin, et al., Nature 574 (2019) 268–272.
doi: 10.1038/s41586-019-1607-3
Z. Dong, L. Feng, Y. Hao, et al., J. Am. Chem. Soc. 140 (2018) 2165–2178.
doi: 10.1021/jacs.7b11036
B. Liu, C. Li, Z. Cheng, et al., Biomater. Sci. 4 (2016) 890–909.
doi: 10.1039/C6BM00076B
F. Liu, Y. Ma, L. Xu, et al., Biomater. Sci. 3 (2015) 1218–1227.
doi: 10.1039/C5BM00045A
Y.L. Hu, M. DeLay, A. Jahangiri, et al., Cancer Res. 72 (2012) 1773–1783.
doi: 10.1158/0008-5472.CAN-11-3831
D. Ackerman, M.C. Simon, Trends Cell Biol. 24 (2014) 472–478.
doi: 10.1016/j.tcb.2014.06.001
R.C. Ji, Cancer Lett. 346 (2014) 6–16.
doi: 10.1016/j.canlet.2013.12.001
P. Prasad, C.R. Gordijo, A.Z. Abbasi, et al., ACS Nano 8 (2014) 3202–3212.
doi: 10.1021/nn405773r
J. Dang, H. He, D. Chen, et al., Biomater. Sci. 5 (2017) 1500–1511.
doi: 10.1039/C7BM00392G
A. Rapisarda, G. Melillo, Nat. Rev. Clin. Oncol. 9 (2012) 378–390.
doi: 10.1038/nrclinonc.2012.64
A. Chowdhury, R. Dasgupta, Appl. Opt. 56 (2017) 439–445.
doi: 10.1364/AO.56.000439
S. Wang, F. Yuan, K. Chen, et al., Biomacromolecules 16 (2015) 2693–2700.
doi: 10.1021/acs.biomac.5b00571
G. Song, C. Liang, X. Yi, et al., Adv. Mater. 28 (2016) 2716–2723.
doi: 10.1002/adma.201504617
X. Song, J. Xu, C. Liang, et al., Nano Lett. 18 (2018) 6360–6368.
doi: 10.1021/acs.nanolett.8b02720
R. Zhang, X. Song, C. Liang, et al., Biomaterials 138 (2017) 13–21.
doi: 10.1016/j.biomaterials.2017.05.025
H. Wang, Y. Chao, J. Liu, et al., Biomaterials 181 (2018) 310–317.
doi: 10.1016/j.biomaterials.2018.08.011
X. Song, L. Feng, C. Liang, et al., Nano Res. 10 (2017) 1200–1212.
doi: 10.1007/s12274-016-1274-8
M.R. Junttila, F.J. de Sauvage, Nature 501 (2013) 346–354.
doi: 10.1038/nature12626
W.A. Denny, Lancet Oncol. 1 (2000) 25–29.
doi: 10.1016/S1470-2045(00)00006-1
G.J. Weiss, J.R. Infante, E.G. Chiorean, et al., Clin. Cancer Res. 17 (2011) 2997.
doi: 10.1158/1078-0432.CCR-10-3425
K.J. Williams, M.R. Albertella, B. Fitzpatrick, et al., Mol. Cancer Ther. 8 (2009) 3266.
doi: 10.1158/1535-7163.MCT-09-0396
L. Feng, L. Cheng, Z. Dong, et al., ACS Nano 11 (2017) 927–937.
doi: 10.1021/acsnano.6b07525
H. Zhao, B. Zhao, L. Li, et al., Adv. Healthc. Mater. 9 (2020) 1901335.
doi: 10.1002/adhm.201901335
C. Wu, Q. Liu, Y. Wang, et al., Chin. Chem. Lett. 32 (2021) 2400–2404.
doi: 10.1016/j.cclet.2021.02.060
Q. Zhu, X. Ling, Y. Yang, et al., Adv. Sci. 6 (2019) 1801899.
doi: 10.1002/advs.201801899
C. Zhang, J. Wu, W. Liu, et al., ACS Appl. Bio Mater. 3 (2020) 3817–3826.
doi: 10.1021/acsabm.0c00386
Z. Li, Q. Xu, X. Lin, et al., Chin. Chem. Lett. 33 (2022) 1875–1879.
doi: 10.1016/j.cclet.2021.10.077
J. Yan, Y. Zhang, L. Zheng, et al., Chin. Chem. Lett. 33 (2022) 767–772.
doi: 10.1016/j.cclet.2021.08.018
J. Zhao, W. Wu, J. Sun, et al., Chem. Soc. Rev. 42 (2013) 5323–5351.
doi: 10.1039/c3cs35531d
T. Yogo, Y. Urano, Y. Ishitsuka, et al., J. Am. Chem. Soc. 127 (2005) 12162–12163.
doi: 10.1021/ja0528533
S.G. Awuah, J. Polreis, V. Biradar, et al., Org. Lett. 13 (2011) 3884–3887.
doi: 10.1021/ol2014076
J.S. Nam, M.G. Kang, J. Kang, et al., J. Am. Chem. Soc. 138 (2016) 10968–10977.
doi: 10.1021/jacs.6b05302
L. He, M.F. Zhang, Z.Y. Pan, et al., Chem. Commun. 55 (2019) 10472–10475.
doi: 10.1039/C9CC04871E
J. Li, L. Zeng, K. Xiong, et al., Chem. Commun. 55 (2019) 10972–10975.
doi: 10.1039/C9CC05826E
S. Monro, K.L. Colón, H. Yin, et al., Chem. Rev. 119 (2019) 797–828.
doi: 10.1021/acs.chemrev.8b00211
C.P. Tan, Y.M. Zhong, L.N. Ji, et al., Chem. Sci. 12 (2021) 2357–2367.
doi: 10.1039/D0SC06885C
C. Imberti, P. Zhang, H. Huang, et al., Angew. Chem. Int. Ed. 59 (2020) 61–73.
doi: 10.1002/anie.201905171
X. Wang, X. Wang, S. Jin, et al., Chem. Rev. 119 (2019) 1138–1192.
doi: 10.1021/acs.chemrev.8b00209
C. Jin, F. Liang, J. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 15987–15991.
doi: 10.1002/anie.202006964
L. Hao, Z.W. Li, D. -. Y. Zhang, et al., Chem. Sci. 10 (2019) 1285–1293.
doi: 10.1039/C8SC04242J
P. Zhang, C.K.C. Chiu, H. Huang, et al., Angew. Chem. Int. Ed. 56 (2017) 14898–14902.
doi: 10.1002/anie.201709082
H. Huang, S. Banerjee, K. Qiu, et al., Nat. Chem. 11 (2019) 1041–1048.
doi: 10.1038/s41557-019-0328-4
C. Huang, C. Liang, T. Sadhukhan, et al., Angew. Chem. Int. Ed. 60 (2021) 9474–9479.
doi: 10.1002/anie.202015671
J. Zhu, A. Ouyang, Z. Shen, et al., Chin. Chem. Lett. 33 (2022) 1907–1912.
doi: 10.1016/j.cclet.2021.11.017
K.N. Wang, L.Y. Liu, G. Qi, et al., Adv. Sci. 8 (2021) 2004379.
doi: 10.1002/advs.202004379
Z. Fan, Y. Rong, T. Sadhukhan, et al., Angew. Chem. Int. Ed. 61 (2022) e202202098.
Q. Yang, H. Jin, Y. Gao, et al., ACS Appl. Mater. Interfaces 11 (2019) 15417–15425.
doi: 10.1021/acsami.9b04098
S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al., Cell 149 (2012) 1060–1072.
doi: 10.1016/j.cell.2012.03.042
W.S. Yang, R. SriRamaratnam, M.E. Welsch, et al., Cell 156 (2014) 317–331.
doi: 10.1016/j.cell.2013.12.010
V.E. Kagan, G. Mao, F. Qu, et al., Nat. Chem. Biol. 13 (2017) 81–90.
doi: 10.1038/nchembio.2238
D. Qi, L. Xing, L. Shen, et al., Chin. Chem. Lett. 33 (2022) 4595–4599.
doi: 10.1016/j.cclet.2022.03.105
X. Meng, J. Deng, F. Liu, et al., Nano Lett. 19 (2019) 7866–7876.
doi: 10.1021/acs.nanolett.9b02904
T. Liu, W. Liu, M. Zhang, et al., ACS Nano 12 (2018) 12181–12192.
doi: 10.1021/acsnano.8b05860
M.J. Hangauer, V.S. Viswanathan, M.J. Ryan, et al., Nature 551 (2017) 247–250.
doi: 10.1038/nature24297
L. Feng, M. Gao, D. Tao, et al., Adv. Funct. Mater. 26 (2016) 2207–2217.
doi: 10.1002/adfm.201504899
C.R. Nishida, P.R. Ortiz de Montellano, J. Med. Chem. 51 (2008) 5118–5120.
doi: 10.1021/jm800496s
S.M. Raleigh, E. Wanogho, M.D. Burke, et al., Int. J. Radiat. Oncol. Biol. Phys. 42 (1998) 763–767.
doi: 10.1016/S0360-3016(98)00308-3
H. Li, W. Shi, X. Li, et al., J. Am. Chem. Soc. 141 (2019) 18301–18307.
doi: 10.1021/jacs.9b09722
E.M. Kosower, N.S. Kosower, Meth. Enzymol. 251 (1995) 133–148.
G.L. Newton, R.C. Fahey, Meth. Enzymol. 251 (1995) 148–166.
Y. Zou, M.J. Palte, A.A. Deik, et al., Nat. Commun. 10 (2019) 1617.
doi: 10.1038/s41467-019-09277-9
T. Xu, Y. Ma, Q. Yuan, et al., ACS Nano 14 (2020) 3414–3425.
doi: 10.1021/acsnano.9b09426
R. Xu, J. Yang, Y. Qian, et al., Nanoscale Horiz. 6 (2021) 348–356.
doi: 10.1039/D0NH00674B
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
Yuequan Wang , Congtian Wu , Chengcheng Feng , Qin Chen , Zhonggui He , Shenwu Zhang , Cong Luo , Jin Sun . Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chinese Chemical Letters, 2025, 36(3): 109902-. doi: 10.1016/j.cclet.2024.109902
Wenbin Zhou , Yafei Gao , Xinyu Feng , Yanqing Zhang , Cong Yang , Lanxi He , Fenghe Zhang , Xiaoguang Li , Qing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
Zhendong Liu , Sainan Liu , Bin Liu , Qi Meng , Meng Yuan , Chunzheng Yang , Yulong Bian , Ping'an Ma , Jun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626
Guanghui Lin , Jieyao Chen , Xiaojia Liu , Yitong Lin , Xudong Zhu , Guotao Yuan , Bowen Yang , Shuanshuan Guo , Yue Pan , Jianhua Zhou . Sustained modulation of tumor microenvironment via sorafenib-loaded mesoporous ferromanganese nanozymes for enhanced apoptosis-ferroptosis cancer therapy. Chinese Chemical Letters, 2025, 36(8): 111018-. doi: 10.1016/j.cclet.2025.111018
Liangliang Jia , Ye Hong , Xinyu He , Ying Zhou , Liujiao Ren , Hongjun Du , Bin Zhao , Bin Qin , Zhe Yang , Di Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Haoran Hou , Siwen Wei , Yutong Shao , Yingnan Wu , Gaobo Hong , Jing An , Jiarui Tian , Jianjun Du , Fengling Song , Xiaojun Peng . A 690-nm-excitable type Ⅰ & Ⅱ photosensitizer based on biotinylation of verteporfin for photodynamic therapy of deep-seated orthotopic breast tumors. Chinese Chemical Letters, 2025, 36(6): 110315-. doi: 10.1016/j.cclet.2024.110315
Tingting Hu , Chao Shen , Xueyan Wang , Fengbo Wu , Zhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562
Tianxu Zhang , Dexuan Xiao , Mi Zhou , Yunfeng Lin , Tao Zhang , Xiaoxiao Cai . Protective effect of osteogenic growth peptide functionalized tetrahedral DNA nanostructure on bone marrow and bone formation ability in chemotherapy-induced myelosuppressive mice. Chinese Chemical Letters, 2025, 36(8): 110594-. doi: 10.1016/j.cclet.2024.110594
Yanjun Cai , Yong Jiang , Yu Chen , Erzhuo Cheng , Yuan Gu , Yuwei Li , Qianqian Liu , Jian Zhang , Jifang Liu , Shisong Han , Bin Yang . Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy. Chinese Chemical Letters, 2025, 36(5): 110437-. doi: 10.1016/j.cclet.2024.110437
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Yuyao Guan , Baoting Yu , Jun Ding , Tingting Sun , Zhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645
Yan Gao , Zi-Lin Song , Shuang Yu , Xiu-Li Zhao , Da-Wei Chen , Ming-Xi Qiao . Enhanced ferroptosis by a nanoparticle mimicking hemoglobin coordinate pattern with self-supplying hydrogen peroxide. Chinese Chemical Letters, 2025, 36(5): 110097-. doi: 10.1016/j.cclet.2024.110097
Quan Lu , Lulu Zhang , Zihan Chen , Jiajia Lv , Jie Gao , Xinmin Li , Hongyu Li , Wen Shi , Xiaohua Li , Huimin Ma , Zeli Yuan . A lipid droplet-targeting fluorescence probe for monitoring of lipid peroxidation in ferroptosis and non-alcoholic fatty liver disease. Chinese Chemical Letters, 2025, 36(8): 110620-. doi: 10.1016/j.cclet.2024.110620
Zheng-Biao Zou , Tai-Zong Wu , Chun-Lan Xie , Yuan Wang , Yan Li , Gang Zhang , Rong Chao , Lian-Zhong Luo , Li-Sheng Li , Xian-Wen Yang . neo-Dicitrinols A–C: Unprecedented PKS-NRPS hybrid citrinin dimers with ferroptosis inhibitory activity from the deep-sea-derived Penicillium citrinum W22. Chinese Chemical Letters, 2024, 35(12): 109723-. doi: 10.1016/j.cclet.2024.109723
Ru Ding , Chunfei Wang , E Lv , Jingjing Zhao , Xucong Zhou , Yuanyi Li , Ying Wang , Bingxue Li , Lixia Zhang , Jin Zhou . A near-infrared fluorescent probe based on Au3+/Pd2+ complexes for glutathione sensing: Applications in acute liver injury, hepatocellular carcinoma, and ferroptosis exploration. Chinese Chemical Letters, 2025, 36(11): 111497-. doi: 10.1016/j.cclet.2025.111497
Qiuyue Lu , Min Shan , Jiaqi Yang , Zhongren Xu , Yueyue Lei , Wukun Liu . A dinuclear gold(I) complex with bis(N-heterocyclic carbene) ligands potentiated immune responses against liver cancer via ROS-driven endoplasmic reticulum stress and ferroptosis. Chinese Chemical Letters, 2025, 36(12): 110940-. doi: 10.1016/j.cclet.2025.110940