Citation: Shi-Yu Zhang, Teng Fu, Yue Gong, De-Ming Guo, Xiu-Li Wang, Yu-Zhong Wang. Design and synthesis of liquid crystal copolyesters with high-frequency low dielectric loss and inherent flame retardancy[J]. Chinese Chemical Letters, ;2023, 34(5): 107615. doi: 10.1016/j.cclet.2022.06.038 shu

Design and synthesis of liquid crystal copolyesters with high-frequency low dielectric loss and inherent flame retardancy

    * Corresponding authors.
    E-mail addresses: futeng@scu.edu.cn (T. Fu), yzwang@scu.edu.cn(Y.-Z. Wang).
  • Received Date: 22 April 2022
    Revised Date: 3 June 2022
    Accepted Date: 14 June 2022
    Available Online: 18 June 2022

Figures(4)

  • Ultra-low dielectric loss (Df) and low dielectric constant (Dk) materials are urgently required in high-speed and large-capacity transmission, in which the wholly aromatic liquid crystal polymer (LCP) has gained attention due to its excellent dielectric properties. However, the relationship between molecular structure and dielectric properties is still not clear. In this study, two copolyesters containing phenyl or naphthyl structures are synthesized, as well as the effects of benzene and naphthalene mesogens on dielectric properties are investigated. The synthesized copolyesters containing naphthalene structure have good comprehensive properties with high thermal stability (T5% = 479 ℃ and Tg = 195–216 ℃), inherent flame retardance (LOI = 33.0–35.0 and UL-94 V-0 level at 0.8 mm), low Dk (2.9–3.0@10 GHz) and low Df (0.0027–0.0047@10 GHz). Naphthalene mesogen can reduce the dielectric loss more significantly than benzene at high frequency by reducing the density and mobility of polarizable groups, which leads to the effectively limited dipole polarization in copolyesters. Consequently, we proposed a new strategy for designing low Dk and low Df materials.
  • 加载中
    1. [1]

      I. Nishimura, S. Fujitomi, Y. Yamashita, N. Kawashima, N. Miyaki, IEEE Proc. Electron. Compon. Technol. Conf. (2020) 641–646.  doi: 10.1109/ectc32862.2020.00106

    2. [2]

      Y.H. Kim, Y.W. Lim, Y.H. Kim, B.S. Bae, ACS Appl. Mater. Interfaces 8 (2016) 8335–8340.  doi: 10.1021/acsami.6b01497

    3. [3]

      J. Chen, M. Zeng, Z. Feng, et al., ACS Appl. Polym. Mater. 1 (2019) 625–630.  doi: 10.1021/acsapm.8b00083

    4. [4]

      X. Li, T. Liu, Y. Jiao, et al., Chem. Eng. J. 359 (2019) 641–651.  doi: 10.1016/j.cej.2018.11.175

    5. [5]

      C.C. Kuo, Y.C. Lin, Y.C. Chen, et al., ACS Appl. Polym. Mater. 3 (2020) 362–371.

    6. [6]

      J. Duan, C. Mei, W. Wu, et al., Macromolecules 54 (2021) 6947–6955.  doi: 10.1021/acs.macromol.1c01002

    7. [7]

      J. Guo, H. Wang, C. Zhang, Q. Zhang, H. Yang, Polymers 12 (2020) 1875.  doi: 10.3390/polym12091875

    8. [8]

      Y. Ji, Y. Bai, X.B. Liu, K. Jia, Adv. Ind. Eng. Polym. Res. 3 (2020) 160–174.

    9. [9]

      V.K. Thakur, M.R. Kessler, Liquid Crystalline Polymers: Volume 1-Structure and Chemistry, Springer, Switzerland, 2016.

    10. [10]

      H.N. Yoon, L.F. Charbonneau, G.W. Calundann, Adv. Mater. 4 (1992) 206–214.  doi: 10.1002/adma.19920040311

    11. [11]

      A. Buyle Padias, H.K. Hall Jr, Polymers 3 (2011) 833–845.  doi: 10.3390/polym3020833

    12. [12]

      A. Pirnia, C.S.P. Sung, Macromolecules 21 (1988) 2699–2706.  doi: 10.1021/ma00187a009

    13. [13]

      I. Ouchi, M. Hosoi, S. Shimotsuma, J. Appl. Polym. Sci. 21 (1977) 3445–3456.  doi: 10.1002/app.1977.070211220

    14. [14]

      B.X. Du, Z.Y. He, Q. Du, Y.G. Guo, IEEE Trans. Dielectr. Electr. Insul. 23 (2016) 134–141.  doi: 10.1109/TDEI.2015.005203

    15. [15]

      J.W. Long, X.H. Shi, B.W. Liu, et al., Acta Polym. Sin. 51 (2020) 681–686.

    16. [16]

      P. Patel, T.R. Hull, C. Moffatt, Fire Mater. 36 (2012) 185–201.  doi: 10.1002/fam.1100

    17. [17]

      A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 43 (2005) 1731–1742.  doi: 10.1016/j.carbon.2005.02.018

    18. [18]

      B.W. Liu, H.B. Zhao, Y.Z. Wang, Adv. Mater. 34 (2021) 2107905.

    19. [19]

      F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy, Springer Science & Business Media, Berlin, 2002.

    20. [20]

      L. Zhu, Q. Wang, Macromolecules 45 (2012) 2937–2954.  doi: 10.1021/ma2024057

    21. [21]

      B. Wang, W. Huang, L. Chi, et al., Chem. Rev. 118 (2018) 5690–5754.  doi: 10.1021/acs.chemrev.8b00045

    22. [22]

      B. Wang, L. Liu, G. Liang, L. Yuan, A. Gu, J. Mater. Chem. A 3 (2015) 23162–23169.  doi: 10.1039/C5TA07611K

    23. [23]

      D.S. Kalika, D.Y. Yoon, Macromolecules 24 (1991) 3404–3412.  doi: 10.1021/ma00011a057

    24. [24]

      D.J. Wilson, C. Vonk, A. Windle, Polymer 34 (1993) 227–237.  doi: 10.1177/088541229300700302

    25. [25]

      C. Qian, R. Bei, T. Zhu, et al., Macromolecules 52 (2019) 4601–4609.  doi: 10.1021/acs.macromol.9b00136

    26. [26]

      Z. Ahmad, Polymer Dielectric Materials, IntechOpen, London, 2012.

    27. [27]

      M.G. Saphiannikova, N.V. Lukasheva, A.A. Darinskii, Y.Y. Gotlib, J. Brickmann, Macromolecules 33 (2000) 606–612.  doi: 10.1021/ma9819440

    28. [28]

      T.T. Hsieh, C. Tiu, G.P. Simon, Polymer 41 (2000) 4737–4742.  doi: 10.1016/S0032-3861(99)00833-2

  • 加载中
    1. [1]

      Li Yan Jian Ping Liu Nan Zheng Yu Bin Zheng . Copolymerization of (10-oxo-10-hydro-9-oxa-10λ5-phosphaphenanthrene-10-yl)-methyl acrylate with styrene. Chinese Chemical Letters, 2009, 20(7): 881-884. doi: 10.1016/j.cclet.2009.01.036

    2. [2]

      Siyi XuYue HanCheng ZhouJianxi LiLiguo ShenHongjun Lin . A biobased flame retardant towards improvement of flame retardancy and mechanical property of ethylene vinyl acetate. Chinese Chemical Letters, 2023, 34(1): 107202-1-107202-5. doi: 10.1016/j.cclet.2022.02.008

    3. [3]

      Shang KeLiao WangWang Yu-Zhong . Thermally stable and flame-retardant poly(vinyl alcohol)/montmorillonite aerogel via a facile heat treatment. Chinese Chemical Letters, 2018, 29(3): 433-436. doi: 10.1016/j.cclet.2017.08.017

    4. [4]

      Chao Zhang Hong Yao Xu Xian Zhao . Structure and properties of low-dielectric-constant poly(acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane)hybrid nanocomposite. Chinese Chemical Letters, 2010, 21(4): 488-491. doi: 10.1016/j.cclet.2009.11.038

    5. [5]

      Xin LI Yu Xiang OU Yun Hong ZHANG Dan Jun LIAN . Synthesis and Structure of A Novel Caged Bicyclic Phosphate Flame Retardant. Chinese Chemical Letters, 2000, 11(10): 887-890.

    6. [6]

      Jie LU Jie KE Bu Xing HAN Hai Ke YAN . Local Dielectric Constant of the Solvent Shell Surrounding Ethyl Acetoacetate in Cosolvent-Modified Supercritical Carbon Dioxide. Chinese Chemical Letters, 1997, 8(4): 327-330.

    7. [7]

      Yu Zhi-PengLi XueHe ChengliangWang DiQin RanZhou GuanqingLiu Zhi-XiAndersen Thomas RieksZhu HaimingChen HongzhengLi Chang-Zhi . High-efficiency organic solar cells with low voltage-loss of 0.46 V. Chinese Chemical Letters, 2020, 31(7): 1991-1996. doi: 10.1016/j.cclet.2019.12.003

    8. [8]

      ZHAO Xiong-Yan . Synthesis and Characterization of a Polyquinoline Derivative Thin Film with a Low Dielectric Constant. Acta Physico-Chimica Sinica, 2010, 26(04): 1164-1170. doi: 10.3866/PKU.WHXB20100425

    9. [9]

      Xuejing Yang Jianfeng Hu Hao Zhang . LCPs勇闯5G人才招聘会. University Chemistry, 2022, 37(9): 2207136-0. doi: 10.3866/PKU.DXHX202207136

    10. [10]

      Hui-Ting WangLi-Hui KongPing-Ping ShiQiang LiQiong YeDa-Wei Fu . The structure and dielectric properties of ionic compounds with flexible ammonium moiety. Chinese Chemical Letters, 2015, 26(3): 382-386. doi: 10.1016/j.cclet.2014.10.025

    11. [11]

      HUANG Deng-DengCHEN Li-Zhuang . A Novel Gd Coordination Polymer Based on 2-(pyridin-3-yl)-1H-imidazole-4,5-dicarboxylate: Synthesis, Structure and Dielectric Properties. Chinese Journal of Structural Chemistry, 2014, 33(3): 361-366.

    12. [12]

      Li-Zhuang ChenDeng-Deng Huang . Synthesis, structure and dielectric properties of a novel Gd coordination polymer based on 2-(pyridin-4-yl)-1H-imidazole-4, 5-dicarboxylate. Chinese Chemical Letters, 2014, 25(2): 279-282.

    13. [13]

      Fang-Fang WangCheng ChenYi ZhangDa-Wei Fu . Crystal structure and dielectric property of supramolecular macrocyclic [(NDPA)·(18-crown-6)]2+·(DMA)+·3ClO4- assemblies. Chinese Chemical Letters, 2015, 26(1): 31-35. doi: 10.1016/j.cclet.2014.10.005

    14. [14]

      Zhi Yong Wu Wei Xu Jin Kui Xia Yao Chi Liu Qian Xin Wu Wei Jian Xu . Flame retardant polyamide 6 by in situ polymerization of ε-caprolactam in the presence of melamine derivatives. Chinese Chemical Letters, 2008, 19(2): 241-244. doi: 10.1016/j.cclet.2007.12.012

    15. [15]

      Wang Wen-HuaWei LongZhang Tian-BaoHe LiuZhang Shu-FanQi Zong-Neng . Phase Transition of Side Chain Liquid Crystal Polyacrylate Studied by Positron Annihilation Lifetime Spectra. Acta Physico-Chimica Sinica, 1996, 12(08): 688-692. doi: 10.3866/PKU.WHXB19960804

    16. [16]

      Zhang Xian-ShengXia Yan-ZhiShi Mei-WuYan Xiong . The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter. Chinese Chemical Letters, 2018, 29(3): 489-492. doi: 10.1016/j.cclet.2017.07.023

    17. [17]

      Hongfei LiLiwei WangYingke ZhuPingkai JiangXingyi Huang . Tailoring the polarity of polymer shell on BaTiO3 nanoparticle surface for improved energy storage performance of dielectric polymer nanocomposites. Chinese Chemical Letters, 2021, 32(7): 2229-2232. doi: 10.1016/j.cclet.2020.12.032

Metrics
  • PDF Downloads(6)
  • Abstract views(157)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return