Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery
-
* Corresponding author.
E-mail address: cy.zhi@cityu.edu.hk (C. Zhi).
Citation:
Rong Zhang, Zhuoxi Wu, Zhaodong Huang, Ying Guo, Shaoce Zhang, Yuwei Zhao, Chunyi Zhi. Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery[J]. Chinese Chemical Letters,
;2023, 34(5): 107600.
doi:
10.1016/j.cclet.2022.06.023
N. Armaroli, V. Balzani, Energy Environ. Sci. 4 (2011) 3193–3222.
doi: 10.1039/c1ee01249e
S. Zhang, D. Chen, Z. Liu, M. Ruan, Z. Guo, Appl. Catal. B: Environ. 284 (2021) 119686.
doi: 10.1016/j.apcatb.2020.119686
D. Chen, Z. Liu, S. Zhang, Appl. Catal. B: Environ. 265 (2020) 118580.
doi: 10.1016/j.apcatb.2019.118580
C. Smith, A.K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 13 (2020) 331–344.
doi: 10.1039/C9EE02873K
Y. Hou, J. Wang, C. Hou, et al., J. Mater. Chem. A 7 (2019) 6552–6561.
doi: 10.1039/C9TA00882A
Y. Hou, J. Wang, J. Liu, et al., Adv. Energy Mater. 9 (2019) 1901751.
doi: 10.1002/aenm.201901751
Z. Huang, Y. Hou, T. Wang, et al., Nat. Commun. 12 (2021) 3106.
doi: 10.1038/s41467-021-23369-5
H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Energy Storage Mater. 36 (2021) 147–170.
doi: 10.1016/j.ensm.2020.12.027
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/C9CS00131J
Z. Huang, X. Li, Q. Yang, et al., J. Mater. Chem. A 7 (2019) 18915–18924.
doi: 10.1039/C9TA06337D
L. Wang, G. Fan, J. Liu, et al., Chin. Chem. Lett. 32 (2021) 1095–1100.
doi: 10.1016/j.cclet.2020.08.022
Y. Wang, N. Wu, Y. Qi, et al., App. Sur. Sci. 585 (2022) 152569.
doi: 10.1016/j.apsusc.2022.152569
T. Zhang, N. Wu, Y. Zhao, et al., Adv. Sci. 9 (2021) 2103954.
M. Wu, G. Zhang, H. Yang, et al., InfoMat 4 (2021) e12265.
F. Liang, K. Zhang, L. Zhang, et al., Small 17 (2021) 2100323.
doi: 10.1002/smll.202100323
S. Zhang, B. Zhang, D. Chen, et al., Nano Energy 79 (2021) 105485.
doi: 10.1016/j.nanoen.2020.105485
S. Zhang, Z. Liu, D. Chen, W. Yan, Appl. Catal. B: Environ. 277 (2020) 119197.
doi: 10.1016/j.apcatb.2020.119197
B. Zhang, Y. Jiang, M. Gao, et al., Nano Energy 80 (2021) 105504.
doi: 10.1016/j.nanoen.2020.105504
H. Yang, X. Wang, Q. Hu, et al., Small Methods 4 (2020) 1900826.
doi: 10.1002/smtd.201900826
Z. Huang, T. Wang, H. Song, et al., Angew. Chem. Int. Ed. 60 (2021) 1011–1021.
doi: 10.1002/anie.202012202
P. Friedlingstein, R.A. Houghton, G. Marland, et al., Nat. Geosci. 3 (2010) 811–812.
doi: 10.1038/ngeo1022
D. Chen, Z. Liu, Z. Guo, W. Yan, M. Ruan, Chem. Eng. J. 381 (2020) 122655.
doi: 10.1016/j.cej.2019.122655
M.A.A. Aziz, A.A. Jalil, S. Triwahyono, A. Ahmad, Green Chem. 17 (2015) 2647–2663.
doi: 10.1039/C5GC00119F
K. Caldeira, A.K. Jain, M.I. Hoffert, Science 299 (2003) 2052–2054.
doi: 10.1126/science.1078938
F. He, X. Zhu, L. Zhong, Z. Li, Y. Qian, Chin. Chem. Lett. 32 (2021) 3175–3179.
doi: 10.1016/j.cclet.2021.03.003
X. Zhang, L. Han, H. Chen, S. Wang, Chin. Chem. Lett. 33 (2021) 1117–1130.
R. Zhang, C. Tang, R. Kong, et al., Nanoscale 9 (2017) 4793–4800.
doi: 10.1039/C7NR00740J
R. Zhang, X. Ren, X. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 28251–28255.
doi: 10.1021/acsami.8b06647
Y. Guo, J. Gu, R. Zhang, et al., Adv. Energy Mater. 11 (2021) 2101699.
doi: 10.1002/aenm.202101699
Y. Guo, J. Liu, Q. Yang, et al., Nano Energy 86 (2021) 106099.
doi: 10.1016/j.nanoen.2021.106099
H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett. 4 (2013) 388–392.
doi: 10.1021/jz3021155
Z. Chen, G. Zhang, L. Du, et al., Small 16 (2020) 2004158.
doi: 10.1002/smll.202004158
Y. Zhang, L. Ji, W. Qiu, et al., Chem. Commun. 54 (2018) 2666–2669.
doi: 10.1039/C8CC00984H
A. Vasileff, Y. Zheng, S.Z. Qiao, Adv. Energy Mater. 7 (2017) 1700759.
doi: 10.1002/aenm.201700759
X. Lu, D.Y.C. Leung, H. Wang, M.K.H. Leung, J. Xuan, ChemElectroChem 1 (2014) 836–849.
doi: 10.1002/celc.201300206
L. Li, C. Tang, H. Jin, K. Davey, S.Z. Qiao, Chem 7 (2021) 3232–3255.
doi: 10.1016/j.chempr.2021.10.008
G. Soloveichik, Nat. Catal. 2 (2019) 377–380.
doi: 10.1038/s41929-019-0280-0
Y. Guo, Q. Yang, D. Wang, et al., Energy Environ. Sci. 13 (2020) 2888–2895.
doi: 10.1039/D0EE01241F
R. Zhang, Y. Zhang, X. Ren, et al., ACS Sustain. Chem. Eng. 6 (2018) 9545–9549.
doi: 10.1021/acssuschemeng.8b01261
Y. Guo, R. Zhang, S. Zhang, et al., Energy Environ. Sci. 14 (2021) 3938–3944.
doi: 10.1039/D1EE00806D
R. Zhang, Y. Guo, S. Zhang, et al., Adv. Energy Mater. 12 (2022) 2103872.
doi: 10.1002/aenm.202103872
J. Xie, Y. Wang, Acc. Chem. Res. 52 (2019) 1721–1729.
doi: 10.1021/acs.accounts.9b00179
Z. Huang, T. Wang, X. Li, et al., Adv. Mater. 34 (2021) 2106180.
Z. Huang, A. Chen, F. Mo, et al., Adv. Energy Mater. 10 (2020) 2001024.
doi: 10.1002/aenm.202001024
W. Zheng, J. Yang, H. Chen, et al., Adv. Funct. Mater. 30 (2020) 1907658.
doi: 10.1002/adfm.201907658
Y. Zhang, L. Jiao, W. Yang, C. Xie, H.L. Jiang, Angew. Chem. Int. Ed. 60 (2021) 7607–7611.
doi: 10.1002/anie.202016219
A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, et al., J. CO2 Util. 18 (2017) 222–228.
doi: 10.1016/j.jcou.2017.01.021
S. Yan, C. Peng, C. Yang, et al., Angew. Chem. Int. Ed. 60 (2021) 25741–25745.
doi: 10.1002/anie.202111351
Z. Li, A. Cao, Q. Zheng, et al., Adv. Mater. 33 (2021) 2005113.
doi: 10.1002/adma.202005113
X. Teng, Y. Niu, S. Gong, et al., Mater. Chem. Front. 5 (2021) 6618–6627.
doi: 10.1039/D1QM00825K
Y. Wang, L. Xu, L. Zhan, et al., Nano Energy 92 (2022) 106780.
doi: 10.1016/j.nanoen.2021.106780
J. Xie, X. Wang, J. Lv, et al., Angew. Chem. Int. Ed. 57 (2018) 16996–17001.
doi: 10.1002/anie.201811853
K. Wang, Y. Wu, X. Cao, L. Gu, J. Hu, Adv. Funct. Mater. 30 (2020) 1908965.
doi: 10.1002/adfm.201908965
Y. Chen, Y. Mei, M. Li, et al., Green Chem. 23 (2021) 8138–8146.
doi: 10.1039/D1GC02496E
X.M. Hu, H.H. Hval, E.T. Bjerglund, et al., ACS Catal. 8 (2018) 6255–6264.
doi: 10.1021/acscatal.8b01022
Y. Zhang, X.Y. Zhang, K. Chen, W.Y. Sun, ChemSusChem 14 (2021) 1847–1852.
doi: 10.1002/cssc.202100431
Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 19969–19972.
doi: 10.1021/ja309317u
S. Gao, M. Jin, J. Sun, et al., J. Mater. Chem. A 9 (2021) 21024–21031.
doi: 10.1039/D1TA04360A
X. Wang, J. Xie, M.A. Ghausi, et al., Adv. Mater. 31 (2019) 1807807.
doi: 10.1002/adma.201807807
Z. Zeng, A.G.A. Mohamed, X. Zhang, Y. Wang, Energy Technol. 9 (2021) 2100205.
doi: 10.1002/ente.202100205
Y. Zhang, X. Wang, S. Zheng, et al., Adv. Funct. Mater. 31 (2021) 2104377.
doi: 10.1002/adfm.202104377
J. Chen, Z. Li, X. Wang, et al., Angew. Chem. Int. Ed. 61 (2021) e202111.
W. Ni, Z. Liu, Y. Zhang, et al., Adv. Mater. 33 (2021) 2003238.
doi: 10.1002/adma.202003238
W. Zheng, Y. Wang, L. Shuai, et al., Adv. Funct. Mater. 31 (2021) 2008146.
doi: 10.1002/adfm.202008146
T. Wang, X. Sang, W. Zheng, et al., Adv. Mater. 32 (2020) 2002430.
doi: 10.1002/adma.202002430
Z. Zeng, L.Y. Gan, H. Bin Yang, et al., Nat. Commun. 12 (2021) 4088.
doi: 10.1038/s41467-021-24052-5
L. Jiao, J. Zhu, Y. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 19417–19424.
doi: 10.1021/jacs.1c08050
P. Li, H. Li, D. Han, et al., Adv. Sci. 6 (2019) 1802355.
doi: 10.1002/advs.201802355
P. Li, T. Shang, X. Dong, et al., Small (2021) 2007548.
S. Gao, Y. Liu, Z. Xie, et al., Small Methods 5 (2021) 2001039.
doi: 10.1002/smtd.202001039
X. Hao, X. An, A.M. Patil, et al., ACS Appl. Mater. Interfaces 13 (2021) 3738–3747.
doi: 10.1021/acsami.0c13440
X. Wang, M.A. Ghausi, R. Yang, et al., J. Mater. Chem. A 8 (2020) 13806–13811.
doi: 10.1039/D0TA01451F
R. Yang, J. Xie, Q. Liu, et al., J. Mater. Chem. A 7 (2019) 2575–2580.
doi: 10.1039/C8TA10958C
J. Wang, X. Zheng, G. Wang, et al., Adv. Mater. 33 (2021) 2106354.
M. Peng, S. Ci, P. Shao, P. Cai, Z. Wen, J. Nanosci. Nanotechnol. 19 (2019) 3232–3236.
doi: 10.1166/jnn.2019.16589
X. Liu, S. Tao, J. Zhang, et al., J. Mater. Chem. A 9 (2021) 26061–26068.
doi: 10.1039/D1TA07522E
X. Wang, S. Feng, W. Lu, et al., Adv. Funct. Mater. 31 (2021) 2104243.
doi: 10.1002/adfm.202104243
S. Shen, C. Han, B. Wang, Y. Wang, Chin. Chem. Lett. 33 (2022) 3721–3725.
doi: 10.1016/j.cclet.2021.10.063
A. Mustafa, Y. Shuai, B.G. Lougou, et al., Chem. Eng. Sci. 245 (2021) 116869.
doi: 10.1016/j.ces.2021.116869
D. Wu, R. Feng, C. Xu, et al., Nano-Micro Lett. 14 (2022) 38.
doi: 10.1007/s40820-021-00772-7
M.D. Garba, M. Usman, S. Khan, et al., J. Environ. Chem. Eng. 9 (2021) 104756.
doi: 10.1016/j.jece.2020.104756
C. Du, Y. Gao, J. Wang, W. Chen, Chem. Commun. 55 (2019) 12801–12804.
doi: 10.1039/C9CC05978D
H. Wang, J. Si, T. Zhang, et al., Appl. Catal. B: Environ. 270 (2020) 118892.
doi: 10.1016/j.apcatb.2020.118892
L. Hollevoet, F. Jardali, Y. Gorbanev, et al., Angew. Chem. Int. Ed. 59 (2021) 23825–23829.
Y. Zhang, W. Qiu, Y. Ma, et al., ACS Catal. 8 (2018) 8540–8544.
doi: 10.1021/acscatal.8b02311
X.W. Lv, X.L. Liu, L.J. Gao, J. Mater. Chem. A 9 (2021) 4026–4035.
doi: 10.1039/D0TA11244E
X.W. Lv, Y. Liu, Y.S. Wang, X.L. Liu, Z.Y. Yuan, Appl. Catal. B: Environ. 280 (2021) 119434.
doi: 10.1016/j.apcatb.2020.119434
J. Sun, W. Kong, Z. Jin, et al., Chin. Chem. Lett. 31 (2020) 953–960.
doi: 10.1016/j.cclet.2020.01.035
H. Wang, Z. Li, Y. Li, et al., Nano Energy 81 (2021) 105613.
doi: 10.1016/j.nanoen.2020.105613
J.T. Ren, L. Chen, H.Y. Wang, Z.Y. Yuan, ACS Appl. Mater. Interfaces 13 (2021) 12106–12117.
doi: 10.1021/acsami.1c00570
J.T. Ren, L. Chen, Y. Liu, Z.Y. Yuan, J. Mater. Chem. A 9 (2021) 11370–11380.
doi: 10.1039/D1TA01144H
L. Zhang, J. Liang, Y. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 25263–25268.
doi: 10.1002/anie.202110879
L. Han, S. Cai, M. Gao, et al., Chem. Rev. 119 (2019) 10916–10976.
doi: 10.1021/acs.chemrev.9b00202
P. Liu, J. Liang, J. Wang, et al., Chem. Commun. 57 (2021) 13562–13565.
doi: 10.1039/D1CC06113E
T. Mou, J. Liang, Z. Ma, et al., J. Mater. Chem. A 9 (2021) 24268–24275.
doi: 10.1039/D1TA07455E
G. Liang, F. Mo, X. Ji, C. Zhi, Nat. Rev. Mater. 6 (2021) 109–123.
C. Amato, Report 22 No. 0148-7191, SAE Technical Paper, 1973.
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Qiyan Wu , Qing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Runzi Cao , Heng Shao , Xinjie Wang , Jian Wang , Enxiang Shang , Yang Li . Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb2O5/GCN heterojunction catalyst: Performance and mechanism. Chinese Chemical Letters, 2025, 36(7): 111029-. doi: 10.1016/j.cclet.2025.111029
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Zheng Liu , Yuqing Bian , Graham Dawson , Jiawei Zhu , Kai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Xinxin Zhang , Zhijian Liang , Xu Zhang , Qian Guo , Ying Xie , Lei Wang , Honggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624