Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery
-
* Corresponding author.
E-mail address: cy.zhi@cityu.edu.hk (C. Zhi).
Citation:
Rong Zhang, Zhuoxi Wu, Zhaodong Huang, Ying Guo, Shaoce Zhang, Yuwei Zhao, Chunyi Zhi. Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery[J]. Chinese Chemical Letters,
;2023, 34(5): 107600.
doi:
10.1016/j.cclet.2022.06.023
N. Armaroli, V. Balzani, Energy Environ. Sci. 4 (2011) 3193–3222.
doi: 10.1039/c1ee01249e
S. Zhang, D. Chen, Z. Liu, M. Ruan, Z. Guo, Appl. Catal. B: Environ. 284 (2021) 119686.
doi: 10.1016/j.apcatb.2020.119686
D. Chen, Z. Liu, S. Zhang, Appl. Catal. B: Environ. 265 (2020) 118580.
doi: 10.1016/j.apcatb.2019.118580
C. Smith, A.K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 13 (2020) 331–344.
doi: 10.1039/C9EE02873K
Y. Hou, J. Wang, C. Hou, et al., J. Mater. Chem. A 7 (2019) 6552–6561.
doi: 10.1039/C9TA00882A
Y. Hou, J. Wang, J. Liu, et al., Adv. Energy Mater. 9 (2019) 1901751.
doi: 10.1002/aenm.201901751
Z. Huang, Y. Hou, T. Wang, et al., Nat. Commun. 12 (2021) 3106.
doi: 10.1038/s41467-021-23369-5
H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Energy Storage Mater. 36 (2021) 147–170.
doi: 10.1016/j.ensm.2020.12.027
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/C9CS00131J
Z. Huang, X. Li, Q. Yang, et al., J. Mater. Chem. A 7 (2019) 18915–18924.
doi: 10.1039/C9TA06337D
L. Wang, G. Fan, J. Liu, et al., Chin. Chem. Lett. 32 (2021) 1095–1100.
doi: 10.1016/j.cclet.2020.08.022
Y. Wang, N. Wu, Y. Qi, et al., App. Sur. Sci. 585 (2022) 152569.
doi: 10.1016/j.apsusc.2022.152569
T. Zhang, N. Wu, Y. Zhao, et al., Adv. Sci. 9 (2021) 2103954.
M. Wu, G. Zhang, H. Yang, et al., InfoMat 4 (2021) e12265.
F. Liang, K. Zhang, L. Zhang, et al., Small 17 (2021) 2100323.
doi: 10.1002/smll.202100323
S. Zhang, B. Zhang, D. Chen, et al., Nano Energy 79 (2021) 105485.
doi: 10.1016/j.nanoen.2020.105485
S. Zhang, Z. Liu, D. Chen, W. Yan, Appl. Catal. B: Environ. 277 (2020) 119197.
doi: 10.1016/j.apcatb.2020.119197
B. Zhang, Y. Jiang, M. Gao, et al., Nano Energy 80 (2021) 105504.
doi: 10.1016/j.nanoen.2020.105504
H. Yang, X. Wang, Q. Hu, et al., Small Methods 4 (2020) 1900826.
doi: 10.1002/smtd.201900826
Z. Huang, T. Wang, H. Song, et al., Angew. Chem. Int. Ed. 60 (2021) 1011–1021.
doi: 10.1002/anie.202012202
P. Friedlingstein, R.A. Houghton, G. Marland, et al., Nat. Geosci. 3 (2010) 811–812.
doi: 10.1038/ngeo1022
D. Chen, Z. Liu, Z. Guo, W. Yan, M. Ruan, Chem. Eng. J. 381 (2020) 122655.
doi: 10.1016/j.cej.2019.122655
M.A.A. Aziz, A.A. Jalil, S. Triwahyono, A. Ahmad, Green Chem. 17 (2015) 2647–2663.
doi: 10.1039/C5GC00119F
K. Caldeira, A.K. Jain, M.I. Hoffert, Science 299 (2003) 2052–2054.
doi: 10.1126/science.1078938
F. He, X. Zhu, L. Zhong, Z. Li, Y. Qian, Chin. Chem. Lett. 32 (2021) 3175–3179.
doi: 10.1016/j.cclet.2021.03.003
X. Zhang, L. Han, H. Chen, S. Wang, Chin. Chem. Lett. 33 (2021) 1117–1130.
R. Zhang, C. Tang, R. Kong, et al., Nanoscale 9 (2017) 4793–4800.
doi: 10.1039/C7NR00740J
R. Zhang, X. Ren, X. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 28251–28255.
doi: 10.1021/acsami.8b06647
Y. Guo, J. Gu, R. Zhang, et al., Adv. Energy Mater. 11 (2021) 2101699.
doi: 10.1002/aenm.202101699
Y. Guo, J. Liu, Q. Yang, et al., Nano Energy 86 (2021) 106099.
doi: 10.1016/j.nanoen.2021.106099
H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett. 4 (2013) 388–392.
doi: 10.1021/jz3021155
Z. Chen, G. Zhang, L. Du, et al., Small 16 (2020) 2004158.
doi: 10.1002/smll.202004158
Y. Zhang, L. Ji, W. Qiu, et al., Chem. Commun. 54 (2018) 2666–2669.
doi: 10.1039/C8CC00984H
A. Vasileff, Y. Zheng, S.Z. Qiao, Adv. Energy Mater. 7 (2017) 1700759.
doi: 10.1002/aenm.201700759
X. Lu, D.Y.C. Leung, H. Wang, M.K.H. Leung, J. Xuan, ChemElectroChem 1 (2014) 836–849.
doi: 10.1002/celc.201300206
L. Li, C. Tang, H. Jin, K. Davey, S.Z. Qiao, Chem 7 (2021) 3232–3255.
doi: 10.1016/j.chempr.2021.10.008
G. Soloveichik, Nat. Catal. 2 (2019) 377–380.
doi: 10.1038/s41929-019-0280-0
Y. Guo, Q. Yang, D. Wang, et al., Energy Environ. Sci. 13 (2020) 2888–2895.
doi: 10.1039/D0EE01241F
R. Zhang, Y. Zhang, X. Ren, et al., ACS Sustain. Chem. Eng. 6 (2018) 9545–9549.
doi: 10.1021/acssuschemeng.8b01261
Y. Guo, R. Zhang, S. Zhang, et al., Energy Environ. Sci. 14 (2021) 3938–3944.
doi: 10.1039/D1EE00806D
R. Zhang, Y. Guo, S. Zhang, et al., Adv. Energy Mater. 12 (2022) 2103872.
doi: 10.1002/aenm.202103872
J. Xie, Y. Wang, Acc. Chem. Res. 52 (2019) 1721–1729.
doi: 10.1021/acs.accounts.9b00179
Z. Huang, T. Wang, X. Li, et al., Adv. Mater. 34 (2021) 2106180.
Z. Huang, A. Chen, F. Mo, et al., Adv. Energy Mater. 10 (2020) 2001024.
doi: 10.1002/aenm.202001024
W. Zheng, J. Yang, H. Chen, et al., Adv. Funct. Mater. 30 (2020) 1907658.
doi: 10.1002/adfm.201907658
Y. Zhang, L. Jiao, W. Yang, C. Xie, H.L. Jiang, Angew. Chem. Int. Ed. 60 (2021) 7607–7611.
doi: 10.1002/anie.202016219
A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, et al., J. CO2 Util. 18 (2017) 222–228.
doi: 10.1016/j.jcou.2017.01.021
S. Yan, C. Peng, C. Yang, et al., Angew. Chem. Int. Ed. 60 (2021) 25741–25745.
doi: 10.1002/anie.202111351
Z. Li, A. Cao, Q. Zheng, et al., Adv. Mater. 33 (2021) 2005113.
doi: 10.1002/adma.202005113
X. Teng, Y. Niu, S. Gong, et al., Mater. Chem. Front. 5 (2021) 6618–6627.
doi: 10.1039/D1QM00825K
Y. Wang, L. Xu, L. Zhan, et al., Nano Energy 92 (2022) 106780.
doi: 10.1016/j.nanoen.2021.106780
J. Xie, X. Wang, J. Lv, et al., Angew. Chem. Int. Ed. 57 (2018) 16996–17001.
doi: 10.1002/anie.201811853
K. Wang, Y. Wu, X. Cao, L. Gu, J. Hu, Adv. Funct. Mater. 30 (2020) 1908965.
doi: 10.1002/adfm.201908965
Y. Chen, Y. Mei, M. Li, et al., Green Chem. 23 (2021) 8138–8146.
doi: 10.1039/D1GC02496E
X.M. Hu, H.H. Hval, E.T. Bjerglund, et al., ACS Catal. 8 (2018) 6255–6264.
doi: 10.1021/acscatal.8b01022
Y. Zhang, X.Y. Zhang, K. Chen, W.Y. Sun, ChemSusChem 14 (2021) 1847–1852.
doi: 10.1002/cssc.202100431
Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 19969–19972.
doi: 10.1021/ja309317u
S. Gao, M. Jin, J. Sun, et al., J. Mater. Chem. A 9 (2021) 21024–21031.
doi: 10.1039/D1TA04360A
X. Wang, J. Xie, M.A. Ghausi, et al., Adv. Mater. 31 (2019) 1807807.
doi: 10.1002/adma.201807807
Z. Zeng, A.G.A. Mohamed, X. Zhang, Y. Wang, Energy Technol. 9 (2021) 2100205.
doi: 10.1002/ente.202100205
Y. Zhang, X. Wang, S. Zheng, et al., Adv. Funct. Mater. 31 (2021) 2104377.
doi: 10.1002/adfm.202104377
J. Chen, Z. Li, X. Wang, et al., Angew. Chem. Int. Ed. 61 (2021) e202111.
W. Ni, Z. Liu, Y. Zhang, et al., Adv. Mater. 33 (2021) 2003238.
doi: 10.1002/adma.202003238
W. Zheng, Y. Wang, L. Shuai, et al., Adv. Funct. Mater. 31 (2021) 2008146.
doi: 10.1002/adfm.202008146
T. Wang, X. Sang, W. Zheng, et al., Adv. Mater. 32 (2020) 2002430.
doi: 10.1002/adma.202002430
Z. Zeng, L.Y. Gan, H. Bin Yang, et al., Nat. Commun. 12 (2021) 4088.
doi: 10.1038/s41467-021-24052-5
L. Jiao, J. Zhu, Y. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 19417–19424.
doi: 10.1021/jacs.1c08050
P. Li, H. Li, D. Han, et al., Adv. Sci. 6 (2019) 1802355.
doi: 10.1002/advs.201802355
P. Li, T. Shang, X. Dong, et al., Small (2021) 2007548.
S. Gao, Y. Liu, Z. Xie, et al., Small Methods 5 (2021) 2001039.
doi: 10.1002/smtd.202001039
X. Hao, X. An, A.M. Patil, et al., ACS Appl. Mater. Interfaces 13 (2021) 3738–3747.
doi: 10.1021/acsami.0c13440
X. Wang, M.A. Ghausi, R. Yang, et al., J. Mater. Chem. A 8 (2020) 13806–13811.
doi: 10.1039/D0TA01451F
R. Yang, J. Xie, Q. Liu, et al., J. Mater. Chem. A 7 (2019) 2575–2580.
doi: 10.1039/C8TA10958C
J. Wang, X. Zheng, G. Wang, et al., Adv. Mater. 33 (2021) 2106354.
M. Peng, S. Ci, P. Shao, P. Cai, Z. Wen, J. Nanosci. Nanotechnol. 19 (2019) 3232–3236.
doi: 10.1166/jnn.2019.16589
X. Liu, S. Tao, J. Zhang, et al., J. Mater. Chem. A 9 (2021) 26061–26068.
doi: 10.1039/D1TA07522E
X. Wang, S. Feng, W. Lu, et al., Adv. Funct. Mater. 31 (2021) 2104243.
doi: 10.1002/adfm.202104243
S. Shen, C. Han, B. Wang, Y. Wang, Chin. Chem. Lett. 33 (2022) 3721–3725.
doi: 10.1016/j.cclet.2021.10.063
A. Mustafa, Y. Shuai, B.G. Lougou, et al., Chem. Eng. Sci. 245 (2021) 116869.
doi: 10.1016/j.ces.2021.116869
D. Wu, R. Feng, C. Xu, et al., Nano-Micro Lett. 14 (2022) 38.
doi: 10.1007/s40820-021-00772-7
M.D. Garba, M. Usman, S. Khan, et al., J. Environ. Chem. Eng. 9 (2021) 104756.
doi: 10.1016/j.jece.2020.104756
C. Du, Y. Gao, J. Wang, W. Chen, Chem. Commun. 55 (2019) 12801–12804.
doi: 10.1039/C9CC05978D
H. Wang, J. Si, T. Zhang, et al., Appl. Catal. B: Environ. 270 (2020) 118892.
doi: 10.1016/j.apcatb.2020.118892
L. Hollevoet, F. Jardali, Y. Gorbanev, et al., Angew. Chem. Int. Ed. 59 (2021) 23825–23829.
Y. Zhang, W. Qiu, Y. Ma, et al., ACS Catal. 8 (2018) 8540–8544.
doi: 10.1021/acscatal.8b02311
X.W. Lv, X.L. Liu, L.J. Gao, J. Mater. Chem. A 9 (2021) 4026–4035.
doi: 10.1039/D0TA11244E
X.W. Lv, Y. Liu, Y.S. Wang, X.L. Liu, Z.Y. Yuan, Appl. Catal. B: Environ. 280 (2021) 119434.
doi: 10.1016/j.apcatb.2020.119434
J. Sun, W. Kong, Z. Jin, et al., Chin. Chem. Lett. 31 (2020) 953–960.
doi: 10.1016/j.cclet.2020.01.035
H. Wang, Z. Li, Y. Li, et al., Nano Energy 81 (2021) 105613.
doi: 10.1016/j.nanoen.2020.105613
J.T. Ren, L. Chen, H.Y. Wang, Z.Y. Yuan, ACS Appl. Mater. Interfaces 13 (2021) 12106–12117.
doi: 10.1021/acsami.1c00570
J.T. Ren, L. Chen, Y. Liu, Z.Y. Yuan, J. Mater. Chem. A 9 (2021) 11370–11380.
doi: 10.1039/D1TA01144H
L. Zhang, J. Liang, Y. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 25263–25268.
doi: 10.1002/anie.202110879
L. Han, S. Cai, M. Gao, et al., Chem. Rev. 119 (2019) 10916–10976.
doi: 10.1021/acs.chemrev.9b00202
P. Liu, J. Liang, J. Wang, et al., Chem. Commun. 57 (2021) 13562–13565.
doi: 10.1039/D1CC06113E
T. Mou, J. Liang, Z. Ma, et al., J. Mater. Chem. A 9 (2021) 24268–24275.
doi: 10.1039/D1TA07455E
G. Liang, F. Mo, X. Ji, C. Zhi, Nat. Rev. Mater. 6 (2021) 109–123.
C. Amato, Report 22 No. 0148-7191, SAE Technical Paper, 1973.
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Qiyan Wu , Qing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347