Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery
-
* Corresponding author.
E-mail address: cy.zhi@cityu.edu.hk (C. Zhi).
Citation:
Rong Zhang, Zhuoxi Wu, Zhaodong Huang, Ying Guo, Shaoce Zhang, Yuwei Zhao, Chunyi Zhi. Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery[J]. Chinese Chemical Letters,
;2023, 34(5): 107600.
doi:
10.1016/j.cclet.2022.06.023
N. Armaroli, V. Balzani, Energy Environ. Sci. 4 (2011) 3193–3222.
doi: 10.1039/c1ee01249e
S. Zhang, D. Chen, Z. Liu, M. Ruan, Z. Guo, Appl. Catal. B: Environ. 284 (2021) 119686.
doi: 10.1016/j.apcatb.2020.119686
D. Chen, Z. Liu, S. Zhang, Appl. Catal. B: Environ. 265 (2020) 118580.
doi: 10.1016/j.apcatb.2019.118580
C. Smith, A.K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 13 (2020) 331–344.
doi: 10.1039/C9EE02873K
Y. Hou, J. Wang, C. Hou, et al., J. Mater. Chem. A 7 (2019) 6552–6561.
doi: 10.1039/C9TA00882A
Y. Hou, J. Wang, J. Liu, et al., Adv. Energy Mater. 9 (2019) 1901751.
doi: 10.1002/aenm.201901751
Z. Huang, Y. Hou, T. Wang, et al., Nat. Commun. 12 (2021) 3106.
doi: 10.1038/s41467-021-23369-5
H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Energy Storage Mater. 36 (2021) 147–170.
doi: 10.1016/j.ensm.2020.12.027
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/C9CS00131J
Z. Huang, X. Li, Q. Yang, et al., J. Mater. Chem. A 7 (2019) 18915–18924.
doi: 10.1039/C9TA06337D
L. Wang, G. Fan, J. Liu, et al., Chin. Chem. Lett. 32 (2021) 1095–1100.
doi: 10.1016/j.cclet.2020.08.022
Y. Wang, N. Wu, Y. Qi, et al., App. Sur. Sci. 585 (2022) 152569.
doi: 10.1016/j.apsusc.2022.152569
T. Zhang, N. Wu, Y. Zhao, et al., Adv. Sci. 9 (2021) 2103954.
M. Wu, G. Zhang, H. Yang, et al., InfoMat 4 (2021) e12265.
F. Liang, K. Zhang, L. Zhang, et al., Small 17 (2021) 2100323.
doi: 10.1002/smll.202100323
S. Zhang, B. Zhang, D. Chen, et al., Nano Energy 79 (2021) 105485.
doi: 10.1016/j.nanoen.2020.105485
S. Zhang, Z. Liu, D. Chen, W. Yan, Appl. Catal. B: Environ. 277 (2020) 119197.
doi: 10.1016/j.apcatb.2020.119197
B. Zhang, Y. Jiang, M. Gao, et al., Nano Energy 80 (2021) 105504.
doi: 10.1016/j.nanoen.2020.105504
H. Yang, X. Wang, Q. Hu, et al., Small Methods 4 (2020) 1900826.
doi: 10.1002/smtd.201900826
Z. Huang, T. Wang, H. Song, et al., Angew. Chem. Int. Ed. 60 (2021) 1011–1021.
doi: 10.1002/anie.202012202
P. Friedlingstein, R.A. Houghton, G. Marland, et al., Nat. Geosci. 3 (2010) 811–812.
doi: 10.1038/ngeo1022
D. Chen, Z. Liu, Z. Guo, W. Yan, M. Ruan, Chem. Eng. J. 381 (2020) 122655.
doi: 10.1016/j.cej.2019.122655
M.A.A. Aziz, A.A. Jalil, S. Triwahyono, A. Ahmad, Green Chem. 17 (2015) 2647–2663.
doi: 10.1039/C5GC00119F
K. Caldeira, A.K. Jain, M.I. Hoffert, Science 299 (2003) 2052–2054.
doi: 10.1126/science.1078938
F. He, X. Zhu, L. Zhong, Z. Li, Y. Qian, Chin. Chem. Lett. 32 (2021) 3175–3179.
doi: 10.1016/j.cclet.2021.03.003
X. Zhang, L. Han, H. Chen, S. Wang, Chin. Chem. Lett. 33 (2021) 1117–1130.
R. Zhang, C. Tang, R. Kong, et al., Nanoscale 9 (2017) 4793–4800.
doi: 10.1039/C7NR00740J
R. Zhang, X. Ren, X. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 28251–28255.
doi: 10.1021/acsami.8b06647
Y. Guo, J. Gu, R. Zhang, et al., Adv. Energy Mater. 11 (2021) 2101699.
doi: 10.1002/aenm.202101699
Y. Guo, J. Liu, Q. Yang, et al., Nano Energy 86 (2021) 106099.
doi: 10.1016/j.nanoen.2021.106099
H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett. 4 (2013) 388–392.
doi: 10.1021/jz3021155
Z. Chen, G. Zhang, L. Du, et al., Small 16 (2020) 2004158.
doi: 10.1002/smll.202004158
Y. Zhang, L. Ji, W. Qiu, et al., Chem. Commun. 54 (2018) 2666–2669.
doi: 10.1039/C8CC00984H
A. Vasileff, Y. Zheng, S.Z. Qiao, Adv. Energy Mater. 7 (2017) 1700759.
doi: 10.1002/aenm.201700759
X. Lu, D.Y.C. Leung, H. Wang, M.K.H. Leung, J. Xuan, ChemElectroChem 1 (2014) 836–849.
doi: 10.1002/celc.201300206
L. Li, C. Tang, H. Jin, K. Davey, S.Z. Qiao, Chem 7 (2021) 3232–3255.
doi: 10.1016/j.chempr.2021.10.008
G. Soloveichik, Nat. Catal. 2 (2019) 377–380.
doi: 10.1038/s41929-019-0280-0
Y. Guo, Q. Yang, D. Wang, et al., Energy Environ. Sci. 13 (2020) 2888–2895.
doi: 10.1039/D0EE01241F
R. Zhang, Y. Zhang, X. Ren, et al., ACS Sustain. Chem. Eng. 6 (2018) 9545–9549.
doi: 10.1021/acssuschemeng.8b01261
Y. Guo, R. Zhang, S. Zhang, et al., Energy Environ. Sci. 14 (2021) 3938–3944.
doi: 10.1039/D1EE00806D
R. Zhang, Y. Guo, S. Zhang, et al., Adv. Energy Mater. 12 (2022) 2103872.
doi: 10.1002/aenm.202103872
J. Xie, Y. Wang, Acc. Chem. Res. 52 (2019) 1721–1729.
doi: 10.1021/acs.accounts.9b00179
Z. Huang, T. Wang, X. Li, et al., Adv. Mater. 34 (2021) 2106180.
Z. Huang, A. Chen, F. Mo, et al., Adv. Energy Mater. 10 (2020) 2001024.
doi: 10.1002/aenm.202001024
W. Zheng, J. Yang, H. Chen, et al., Adv. Funct. Mater. 30 (2020) 1907658.
doi: 10.1002/adfm.201907658
Y. Zhang, L. Jiao, W. Yang, C. Xie, H.L. Jiang, Angew. Chem. Int. Ed. 60 (2021) 7607–7611.
doi: 10.1002/anie.202016219
A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, et al., J. CO2 Util. 18 (2017) 222–228.
doi: 10.1016/j.jcou.2017.01.021
S. Yan, C. Peng, C. Yang, et al., Angew. Chem. Int. Ed. 60 (2021) 25741–25745.
doi: 10.1002/anie.202111351
Z. Li, A. Cao, Q. Zheng, et al., Adv. Mater. 33 (2021) 2005113.
doi: 10.1002/adma.202005113
X. Teng, Y. Niu, S. Gong, et al., Mater. Chem. Front. 5 (2021) 6618–6627.
doi: 10.1039/D1QM00825K
Y. Wang, L. Xu, L. Zhan, et al., Nano Energy 92 (2022) 106780.
doi: 10.1016/j.nanoen.2021.106780
J. Xie, X. Wang, J. Lv, et al., Angew. Chem. Int. Ed. 57 (2018) 16996–17001.
doi: 10.1002/anie.201811853
K. Wang, Y. Wu, X. Cao, L. Gu, J. Hu, Adv. Funct. Mater. 30 (2020) 1908965.
doi: 10.1002/adfm.201908965
Y. Chen, Y. Mei, M. Li, et al., Green Chem. 23 (2021) 8138–8146.
doi: 10.1039/D1GC02496E
X.M. Hu, H.H. Hval, E.T. Bjerglund, et al., ACS Catal. 8 (2018) 6255–6264.
doi: 10.1021/acscatal.8b01022
Y. Zhang, X.Y. Zhang, K. Chen, W.Y. Sun, ChemSusChem 14 (2021) 1847–1852.
doi: 10.1002/cssc.202100431
Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 19969–19972.
doi: 10.1021/ja309317u
S. Gao, M. Jin, J. Sun, et al., J. Mater. Chem. A 9 (2021) 21024–21031.
doi: 10.1039/D1TA04360A
X. Wang, J. Xie, M.A. Ghausi, et al., Adv. Mater. 31 (2019) 1807807.
doi: 10.1002/adma.201807807
Z. Zeng, A.G.A. Mohamed, X. Zhang, Y. Wang, Energy Technol. 9 (2021) 2100205.
doi: 10.1002/ente.202100205
Y. Zhang, X. Wang, S. Zheng, et al., Adv. Funct. Mater. 31 (2021) 2104377.
doi: 10.1002/adfm.202104377
J. Chen, Z. Li, X. Wang, et al., Angew. Chem. Int. Ed. 61 (2021) e202111.
W. Ni, Z. Liu, Y. Zhang, et al., Adv. Mater. 33 (2021) 2003238.
doi: 10.1002/adma.202003238
W. Zheng, Y. Wang, L. Shuai, et al., Adv. Funct. Mater. 31 (2021) 2008146.
doi: 10.1002/adfm.202008146
T. Wang, X. Sang, W. Zheng, et al., Adv. Mater. 32 (2020) 2002430.
doi: 10.1002/adma.202002430
Z. Zeng, L.Y. Gan, H. Bin Yang, et al., Nat. Commun. 12 (2021) 4088.
doi: 10.1038/s41467-021-24052-5
L. Jiao, J. Zhu, Y. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 19417–19424.
doi: 10.1021/jacs.1c08050
P. Li, H. Li, D. Han, et al., Adv. Sci. 6 (2019) 1802355.
doi: 10.1002/advs.201802355
P. Li, T. Shang, X. Dong, et al., Small (2021) 2007548.
S. Gao, Y. Liu, Z. Xie, et al., Small Methods 5 (2021) 2001039.
doi: 10.1002/smtd.202001039
X. Hao, X. An, A.M. Patil, et al., ACS Appl. Mater. Interfaces 13 (2021) 3738–3747.
doi: 10.1021/acsami.0c13440
X. Wang, M.A. Ghausi, R. Yang, et al., J. Mater. Chem. A 8 (2020) 13806–13811.
doi: 10.1039/D0TA01451F
R. Yang, J. Xie, Q. Liu, et al., J. Mater. Chem. A 7 (2019) 2575–2580.
doi: 10.1039/C8TA10958C
J. Wang, X. Zheng, G. Wang, et al., Adv. Mater. 33 (2021) 2106354.
M. Peng, S. Ci, P. Shao, P. Cai, Z. Wen, J. Nanosci. Nanotechnol. 19 (2019) 3232–3236.
doi: 10.1166/jnn.2019.16589
X. Liu, S. Tao, J. Zhang, et al., J. Mater. Chem. A 9 (2021) 26061–26068.
doi: 10.1039/D1TA07522E
X. Wang, S. Feng, W. Lu, et al., Adv. Funct. Mater. 31 (2021) 2104243.
doi: 10.1002/adfm.202104243
S. Shen, C. Han, B. Wang, Y. Wang, Chin. Chem. Lett. 33 (2022) 3721–3725.
doi: 10.1016/j.cclet.2021.10.063
A. Mustafa, Y. Shuai, B.G. Lougou, et al., Chem. Eng. Sci. 245 (2021) 116869.
doi: 10.1016/j.ces.2021.116869
D. Wu, R. Feng, C. Xu, et al., Nano-Micro Lett. 14 (2022) 38.
doi: 10.1007/s40820-021-00772-7
M.D. Garba, M. Usman, S. Khan, et al., J. Environ. Chem. Eng. 9 (2021) 104756.
doi: 10.1016/j.jece.2020.104756
C. Du, Y. Gao, J. Wang, W. Chen, Chem. Commun. 55 (2019) 12801–12804.
doi: 10.1039/C9CC05978D
H. Wang, J. Si, T. Zhang, et al., Appl. Catal. B: Environ. 270 (2020) 118892.
doi: 10.1016/j.apcatb.2020.118892
L. Hollevoet, F. Jardali, Y. Gorbanev, et al., Angew. Chem. Int. Ed. 59 (2021) 23825–23829.
Y. Zhang, W. Qiu, Y. Ma, et al., ACS Catal. 8 (2018) 8540–8544.
doi: 10.1021/acscatal.8b02311
X.W. Lv, X.L. Liu, L.J. Gao, J. Mater. Chem. A 9 (2021) 4026–4035.
doi: 10.1039/D0TA11244E
X.W. Lv, Y. Liu, Y.S. Wang, X.L. Liu, Z.Y. Yuan, Appl. Catal. B: Environ. 280 (2021) 119434.
doi: 10.1016/j.apcatb.2020.119434
J. Sun, W. Kong, Z. Jin, et al., Chin. Chem. Lett. 31 (2020) 953–960.
doi: 10.1016/j.cclet.2020.01.035
H. Wang, Z. Li, Y. Li, et al., Nano Energy 81 (2021) 105613.
doi: 10.1016/j.nanoen.2020.105613
J.T. Ren, L. Chen, H.Y. Wang, Z.Y. Yuan, ACS Appl. Mater. Interfaces 13 (2021) 12106–12117.
doi: 10.1021/acsami.1c00570
J.T. Ren, L. Chen, Y. Liu, Z.Y. Yuan, J. Mater. Chem. A 9 (2021) 11370–11380.
doi: 10.1039/D1TA01144H
L. Zhang, J. Liang, Y. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 25263–25268.
doi: 10.1002/anie.202110879
L. Han, S. Cai, M. Gao, et al., Chem. Rev. 119 (2019) 10916–10976.
doi: 10.1021/acs.chemrev.9b00202
P. Liu, J. Liang, J. Wang, et al., Chem. Commun. 57 (2021) 13562–13565.
doi: 10.1039/D1CC06113E
T. Mou, J. Liang, Z. Ma, et al., J. Mater. Chem. A 9 (2021) 24268–24275.
doi: 10.1039/D1TA07455E
G. Liang, F. Mo, X. Ji, C. Zhi, Nat. Rev. Mater. 6 (2021) 109–123.
C. Amato, Report 22 No. 0148-7191, SAE Technical Paper, 1973.
Shujin Shen , Cheng Han , Bing Wang , Yingde Wang . Engineering d-band center of nickel in nickel@nitrogen-doped carbon nanotubes array for electrochemical reduction of CO2 to CO and Zn-CO2 batteries. Chinese Chemical Letters, 2022, 33(8): 3721-3725. doi: 10.1016/j.cclet.2021.10.063
Cheng Wang , Liujun Jin , Hongyuan Shang , Hui Xu , Yukihide Shiraishi , Yukou Du . Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chinese Chemical Letters, 2021, 32(7): 2108-2116. doi: 10.1016/j.cclet.2020.11.051
Yi Zhang , Chundong Wang . Yolk-shell nanostructural Ni2P/C composites as the high performance electrocatalysts toward urea oxidation. Chinese Chemical Letters, 2021, 32(7): 2222-2228. doi: 10.1016/j.cclet.2020.11.040
Xiao-Peng Li , Li-Rong Zheng , Si-Jie Liu , Ting Ouyang , Siyu Ye , Zhao-Qing Liu . Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chinese Chemical Letters, 2022, 33(11): 4761-4765. doi: 10.1016/j.cclet.2021.12.095
Mei Qingqing , Shen Xiaojun , Liu Huizhen , Han Buxing . Selectively transform lignin into value-added chemicals. Chinese Chemical Letters, 2019, 30(1): 15-24. doi: 10.1016/j.cclet.2018.04.032
Yuehan Cao , Rui Guo , Minzhi Ma , Zeai Huang , Ying Zhou . Effects of Electron Density Variation of Active Sites in CO2 Activation and Photoreduction: A Review. Acta Physico-Chimica Sinica, 2024, 40(1): 2303029-0. doi: 10.3866/PKU.WHXB202303029
Hao Leiduan , Sun Zhenyu . Metal Oxide-Based Materials for Electrochemical CO2 Reduction. Acta Physico-Chimica Sinica, 2021, 37(7): 2009033-0. doi: 10.3866/PKU.WHXB202009033
Siyu Kuang , Minglu Li , Xiaoyi Chen , Haoyuan Chi , Jianlong Lin , Zheng Hu , Shi Hu , Sheng Zhang , Xinbin Ma . Intermetallic CuAu nanoalloy for stable electrochemical CO2 reduction. Chinese Chemical Letters, 2023, 34(7): 108013-1-108013-4. doi: 10.1016/j.cclet.2022.108013
Yu Yan , Hongjiao Qu , Xiaonan Zheng , Kexin Zhao , Xiaoxiao Li , Yuan Yao , Yang Liu . Amorphous core/shell Ti-doped SnO2 with synergistically improved N2 adsorption/activation and electrical conductivity for electrochemical N2 reduction. Chinese Chemical Letters, 2022, 33(10): 4655-4658. doi: 10.1016/j.cclet.2021.12.054
Hao Zhang , Caihong He , Sumei Han , Zeyang Du , Ling Wang , Qinbai Yun , Wenbin Cao , Bowei Zhang , Ya-Hui Tian , Qipeng Lu . Crystal facet-dependent electrocatalytic performance of metallic Cu in CO2 reduction reactions. Chinese Chemical Letters, 2022, 33(8): 3641-3649. doi: 10.1016/j.cclet.2021.12.018
Xiaomin Kang , Guodong Fu , Xian-Zhu Fu , Jing-Li Luo . Copper-based metal-organic frameworks for electrochemical reduction of CO2. Chinese Chemical Letters, 2023, 34(6): 107757-1-107757-10. doi: 10.1016/j.cclet.2022.107757
Wei Song , Jia Wang , Ling Fu , Chaozheng He , Chenxu Zhao , Yongliang Guo , Jinrong Huo , Guohui Dong . First-principles study on Fe2B2 as efficient catalyst for nitrogen reduction reaction. Chinese Chemical Letters, 2021, 32(10): 3137-3142. doi: 10.1016/j.cclet.2021.02.043
Xiao-Peng Li , Can Huang , Wen-Kai Han , Ting Ouyang , Zhao-Qing Liu . Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 2021, 32(9): 2597-2616. doi: 10.1016/j.cclet.2021.01.047
Chenhui Niu , Yixin Zhang , Jing Dong , Ruixue Yuan , Wei Kou , Lianbin Xu . 3D ordered macro-/mesoporous NixCo100-x alloys as high-performance bifunctional electrocatalysts for overall water splitting. Chinese Chemical Letters, 2021, 32(8): 2484-2488. doi: 10.1016/j.cclet.2020.12.045
YANG Xiao-Kun , CHEN A-Ling , YI Qing-Feng . Easy Preparation of N-Doped Graphene-like Nanosheets as Excellent Metal-Free Cathodic Electrocatalysts of Zn-Air Battery. Chinese Journal of Inorganic Chemistry, 2021, 37(1): 157-170. doi: 10.11862/CJIC.2021.001
Tianfang Yang , Ye Chen , Yang Liu , Xupo Liu , Shuyan Gao . Self-sacrificial template synthesis of Fe, N co-doped porous carbon as efficient oxygen reduction electrocatalysts towards Zn-air battery application. Chinese Chemical Letters, 2022, 33(4): 2171-2177. doi: 10.1016/j.cclet.2021.09.014
Huan Wang , Yunyan Wu , Yanfei Zhao , Zhimin Liu . Recent Progress on Ionic Liquid-Mediated CO2 Conversion. Acta Physico-Chimica Sinica, 2021, 37(5): 2010022-0. doi: 10.3866/PKU.WHXB202010022
Xu Jing-Jing , Xiao Chun-Hui , Ding Shu-Jiang . Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction. Chinese Chemical Letters, 2017, 28(4): 748-754. doi: 10.1016/j.cclet.2016.12.006
Wang Dongdong , Zou Yuqin , Tao Li , Zhang Yiqiong , Liu Zhijuan , Du Shiqian , Zang Shuangquan , Wang Shuangyin . Low-temperature plasma technology for electrocatalysis. Chinese Chemical Letters, 2019, 30(4): 826-838. doi: 10.1016/j.cclet.2019.03.051
Xiaonan Zheng , Yang Liu , Yu Yan , Xiaoxiao Li , Yuan Yao . Modulation effect in adjacent dual metal single atom catalysts for electrochemical nitrogen reduction reaction. Chinese Chemical Letters, 2022, 33(3): 1455-1458. doi: 10.1016/j.cclet.2021.08.102