Substrate specificity and reaction directionality of a three-residue cyclophane forming enzyme PauB
-
* Corresponding author.
E-mail address: qizhang@sioc.ac.cn (Q. Zhang).
Citation:
Yuanjun Han, Suze Ma, Qi Zhang. Substrate specificity and reaction directionality of a three-residue cyclophane forming enzyme PauB[J]. Chinese Chemical Letters,
;2023, 34(1): 107589.
doi:
10.1016/j.cclet.2022.06.012
P.G. Arnison, M.J. Bibb, G. Bierbaum, et al., Nat. Prod. Rep. 30 (2013) 108-160.
doi: 10.1039/C2NP20085F
M. Montalbán-López, T.A. Scott, S. Ramesh, et al., Nat. Prod. Rep. 38 (2021) 130-239.
doi: 10.1039/d0np00027b
R. Zallot, N. Oberg, J.A. Gerlt, Biochemistry 58 (2019) 4169-4182.
doi: 10.1021/acs.biochem.9b00735
N. Oberg, T.W. Precord, D.A. Mitchell, J.A. Gerlt, ACS Bio Med Chem. Au 2 (2022) 22-35.
doi: 10.1021/acsbiomedchemau.1c00048
D.H. Haft, M.K. Basu, J. Bacteriol. 193 (2011) 2745-2755.
doi: 10.1128/JB.00040-11
N. Mahanta, G.A. Hudson, D.A. Mitchell, Biochemistry 56 (2017) 5229-5244.
doi: 10.1021/acs.biochem.7b00771
A. Benjdia, C. Balty, O. Berteau, Front. Chem. 5 (2017) 87.
doi: 10.3389/fchem.2017.00087
K.A. Clark, L.B. Bushin, M.R. Seyedsayamdost, ACS Bio Med Chem Au 2 (2022) 328–339.
doi: 10.1021/acsbiomedchemau.2c00004
A. Mendauletova, A. Kostenko, Y. Lien, J. Latham, ACS Bio Med Chem Au 2 (2022) 53-59.
doi: 10.1021/acsbiomedchemau.1c00045
T. Mo, X. Ji, W. Yuan, et al., Angew. Chem. Int. Ed. 58 (2019) 18793-18797.
doi: 10.1002/anie.201908490
L.B. Bushin, B.C. Covington, B.E. Rued, M.J. Federle, M.R. Seyedsayamdost, J. Am. Chem. Soc. 142 (2020) 16265–16275.
doi: 10.1021/jacs.0c05546
S. Chiumento, C. Roblin, S. Kieffer-Jaquinod, et al., Sci. Adv. 5 (2019) eaaw9969.
doi: 10.1126/sciadv.aaw9969
C. Balty, A. Guillot, L. Fradale, et al., J. Biol. Chem. 294 (2019) 14512-14525.
doi: 10.1074/jbc.ra119.009416
C. Roblin, S. Chiumento, O. Bornet, et al., Proc. Natl. Acad. Sci. USA. 117 (2020) 19168-19177.
doi: 10.1073/pnas.2004045117
G.A. Hudson, B.J. Burkhart, A.J. DiCaprio, et al., J. Am. Chem. Soc. 141 (2019) 8228-8238.
doi: 10.1021/jacs.9b01519
Y. Chen, Y. Yang, X. Ji, et al., J. Biotechnol. (2020) e2000136.
A. Caruso, L.B. Bushin, K.A. Clark, R.J. Martinie, M.R. Seyedsayamdost, J. Am. Chem. Soc. 141 (2019) 990-997.
doi: 10.1021/jacs.8b11060
K.R. Schramma, L.B. Bushin, M.R. Seyedsayamdost, Nat. Chem. 7 (2015) 431-437.
doi: 10.1038/nchem.2237
K.A. Clark, L.B. Bushin, M.R. Seyedsayamdost, J. Am. Chem. Soc. 141 (2019) 10610-10615.
doi: 10.1021/jacs.9b05151
A. Caruso, R.J. Martinie, L.B. Bushin, M.R. Seyedsayamdost, J. Am. Chem. Soc. 141 (2019) 16610-16614.
doi: 10.1021/jacs.9b09210
Y. Imai, K.J. Meyer, A. Iinishi, et al., Nature 576 (2019) 459-464.
doi: 10.1038/s41586-019-1791-1
S. Groß, F. Panter, D. Pogorevc, et al., Chem. Sci. 12 (2021) 11882-11893.
doi: 10.1039/d1sc02725e
S. Guo, S. Wang, S. Ma, et al., Nat. Commun. 13 (2022) 2361.
doi: 10.1038/s41467-022-30084-2
A. Kostenko, Y. Lien, A. Mendauletova, et al., J. Biol. Chem. 298 (2022) 101881.
doi: 10.1016/j.jbc.2022.101881
H.J. Sofia, G. Chen, B.G. Hetzler, J.F. Reyes-Spindola, N.E. Miller, Nucleic Acid. Res. 29 (2001) 1097-1106.
doi: 10.1093/nar/29.5.1097
W.E. Broderick, B.M. Hoffman, J.B. Broderick, Acc. Chem. Res. 51 (2018) 2611-2619.
doi: 10.1021/acs.accounts.8b00356
T.Q.N. Nguyen, Y.W. Tooh, R. Sugiyama, et al., Nat. Chem. 12 (2020) 1042–1053.
doi: 10.1038/s41557-020-0519-z
S. Ma, H. Chen, H. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 19957-19964.
doi: 10.1002/anie.202107192
S.C. Bobeica, S.H. Dong, L. Huo, et al., eLife 8 (2019) e42305.
doi: 10.7554/eLife.42305
T.J. Oman, W.A. van der Donk, Nat. Chem. Biol. 6 (2010) 9-18.
doi: 10.1038/nchembio.286
J.A. Gerlt, J.T. Bouvier, D.B. Davidson, et al., Biochim. Biophys. Acta 1854 (2015) 1019-1037.
doi: 10.1016/j.bbapap.2015.04.015
J.I. Tietz, C.J. Schwalen, P.S. Patel, et al., Nat. Chem. Biol. 13 (2017) 470-478.
doi: 10.1038/nchembio.2319
M. Lv, X. Ji, J. Zhao, et al., J. Am. Chem. Soc. 138 (2016) 6427-6435.
doi: 10.1021/jacs.6b02221
Y. Zhong, X. Ji, Chin. J. Chem. 38 (2020) 218-219.
doi: 10.1002/cjoc.201900480
Y. Zhong, X. Ji, Q. Zhang, Chin. J. Chem. 38 (2020) 39-42.
doi: 10.1002/cjoc.201900399
Y. Yin, X. Ji, Q. Zhang, Chin. J. Chem. 39 (2021) 2417-2421.
doi: 10.1002/cjoc.202100304
W. Ji, X. Ji, Q. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 8880-8884.
doi: 10.1002/anie.202000812
T.A. Grell, P.J. Goldman, C.L. Drennan, J. Biol. Chem. 290 (2015) 3964-3971.
doi: 10.1074/jbc.R114.581249
N.D. Lanz, S.J. Booker, Biochim. Biophys. Acta 1853 (2015) 1316-1334.
doi: 10.1016/j.bbamcr.2015.01.002
M.W. Ruszczycky, S.H. Choi, H.W. Liu, J. Am. Chem. Soc. 132 (2010) 2359-2369.
doi: 10.1021/ja909451a
X. Ji, T. Mo, W.Q. Liu, et al., Angew. Chem. Int. Ed. 58 (2019) 6235-6238.
doi: 10.1002/anie.201814708
J. Cheng, W. Ji, S. Ma, et al., Angew. Chem. Int. Ed. 60 (2021) 7570-7575.
doi: 10.1002/anie.202015177
J. Cheng, W. Ding, Q. Zhang, Chin. J. Chem. 40 (2022) 1053-1058.
doi: 10.1002/cjoc.202200032
J. Zhao, W. Ji, X. Ji, Q. Zhang, Chin. J. Chem. 38 (2020) 959-962.
doi: 10.1002/cjoc.202000119
R. Wu, W. Ding, Q. Zhang, Chin. J. Chem. 38 (2020) 959–962.
doi: 10.1002/cjoc.202000119
H. Lee, W.A. van der Donk, Annu. Rev. Biochem. 91 (2022) 269–294.
doi: 10.1146/annurev-biochem-032620-104956
Fenglin Jiang , Anan Liu , Qian Wei , Youcai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Kunya Wang , Bingyu Liu , Daojiang Yan , Jian Bai , Haibo Yu , Youcai Hu . Full biosynthetic pathway of pyrrolobenzoxazines. Chinese Chemical Letters, 2025, 36(1): 109811-. doi: 10.1016/j.cclet.2024.109811
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
Peng Chen , Lijuan Liang , Yufei Zhu , Zhimin Xing , Zhenhua Jia , Teck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Yixuan Zhu , Qingtong Wang , Jin Li , Lin Chen , Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443