A promising controllable CO2 capture and separation materials for CO2/CH4/H2 under electric field
-
* Corresponding authors.
E-mail addresses: hecz2019@xatu.edu.cn (C. He), ful263@nenu.edu.cn (L. Fu).
Citation: Chaozheng He, Houyong Yang, Ling Fu. A promising controllable CO2 capture and separation materials for CO2/CH4/H2 under electric field[J]. Chinese Chemical Letters, ;2023, 34(5): 107581. doi: 10.1016/j.cclet.2022.06.004
E.S. Sanz-Pérez, C.R. Murdock, S.A. Didas, C.W. Jones, Chem. Rev. 116 (2016) 11840–11876.
doi: 10.1021/acs.chemrev.6b00173
Q. Li, Y.C. Wang, J. Zeng, et al., Rare Met. 40 (2021) 3442–3453.
doi: 10.1007/s12598-021-01772-7
Y. Wang, Y. Liu, W. Liu, et al., Energy Environ. Sci. 13 (2020) 4609–4624.
doi: 10.1039/D0EE02833A
L. Fu, R. Wang, C.X. Zhao, et al., Chem. Eng. J. 414 (2021) 128857.
doi: 10.1016/j.cej.2021.128857
B. Yang, L. Li, Z. Jia, et al., Chin. Chem. Lett. 31 (2020) 2627–2633.
doi: 10.1016/j.cclet.2020.05.031
S. Gong, G. Zhu, R. Wang, et al., Appl. Catal. B: Environ. 297 (2021) 120413.
doi: 10.1016/j.apcatb.2021.120413
C.H. Yang, F. Nosheen, Z.C. Zhang, Rare Met. 40 (2021) 1412–1430.
doi: 10.1007/s12598-020-01600-4
R. Cheng, C.C. Chung, S. Wang, et al., Mater. Today Phys. 17 (2021) 100358.
doi: 10.1016/j.mtphys.2021.100358
Q.G. Jiang, Z.M. Ao, S. Li, et al., RSC Adv. 4 (2014) 20290–20296.
doi: 10.1039/C4RA01908C
C. He, R. Wang, D. Xiang, et al., Appl. Surf. Sci. 509 (2020) 145392.
doi: 10.1016/j.apsusc.2020.145392
H. Yang, C. He, L. Fu, et al., Chin. Chem. Lett. 32 (2021) 3202–3206.
doi: 10.1016/j.cclet.2021.03.038
Y.S. Bae, R.Q. Snurr, Angew. Chem. Int. Ed. 50 (2011) 11586–11596.
doi: 10.1002/anie.201101891
R.A. Agarwal, A.K. Gupta, D. De, Cryst. Growth Des. 19 (2019) 2010–2018.
doi: 10.1021/acs.cgd.8b01462
M. Kang, D.W. Kang, C.S. Hong, Dalton Trans. 48 (2019) 2263–2270.
doi: 10.1039/C8DT04339F
Y. Zeng, R. Zou, Y. Zhao, Adv. Mater. 28 (2016) 2855–2873.
doi: 10.1002/adma.201505004
R.M. del Castillo, A.G. Calles, R. Espejel-Morales, et al., Comput. Condens. Matter 16 (2018) e00315.
doi: 10.1016/j.cocom.2018.e00315
G.S. Rao, T. Hussain, M.S. Islam, et al., Nanotechnology 27 (2016) 015502.
doi: 10.1088/0957-4484/27/1/015502
Y. Wang, L. Xu, L. Zhan, et al., Nano Energy 92 (2022) 106780.
doi: 10.1016/j.nanoen.2021.106780
K.V. Kumar, K. Preuss, L. Lu, et al., J. Phys. Chem. C 119 (2015) 22310–22321.
doi: 10.1021/acs.jpcc.5b06017
A. Liu, J. Long, S. Yuan, et al., Phys. Chem. Chem. Phys. 21 (2019) 5133–5141.
doi: 10.1039/C9CP00004F
E.N.C. Paura, W.F. da Cunha, J.B.L. Martins, et al., RSC Adv. 4 (2014) 28249–28258.
doi: 10.1039/C4RA00432A
N. Iqbal, X. Wang, A.A. Babar, et al., J. Colloid Interfaces Sci. 476 (2016) 87–93.
doi: 10.1016/j.jcis.2016.05.010
Z.X. Wei, Y.T. Zhu, J.Y. Liu, et al., Rare Met. 40 (2021) 767–789.
doi: 10.1007/s12598-020-01592-1
M. Wang, S. Wei, Z. Wu, et al., Mater. Lett. 230 (2018) 28–31.
doi: 10.1016/j.matlet.2018.07.071
A. Bafekry, C. Stampfl, M. Ghergherehchi, Nanotechnology 31 (2020) 295202.
doi: 10.1088/1361-6528/ab884e
S. Zhou, M. Wang, S. Wei, et al., Mater. Today Phys. 16 (2021) 100301.
doi: 10.1016/j.mtphys.2020.100301
S. Zhou, M. Wang, S. Wei, et al., Mater. Today Phys. 21 (2021) 100539.
doi: 10.1016/j.mtphys.2021.100539
R. Burgos, J.H. Warnes, J. Magn. Magn. Mater. 498 (2020) 166156.
doi: 10.1016/j.jmmm.2019.166156
A.A. Khan, I. Ahmad, R. Ahmad, Chem. Phys. Lett. 742 (2020) 137155.
doi: 10.1016/j.cplett.2020.137155
M. Wang, Z. Zhang, Y. Gong, et al., Appl. Surf. Sci. 502 (2020) 144067.
doi: 10.1016/j.apsusc.2019.144067
S. Zhou, M. Wang, J. Wang, et al., J. Mater. Chem. A 8 (2020) 9970–9980.
doi: 10.1039/D0TA03262J
H. An, B. Feng, S. Su, Carbon 47 (2009) 2396–2405.
doi: 10.1016/j.carbon.2009.04.029
S.K. Ryi, J.S. Park, K.R. Hwang, et al., Int. J. Hydrog. Energy 36 (2011) 13769–13775.
doi: 10.1016/j.ijhydene.2011.07.109
S.S. Kazi, A. Aranda, L. di Felice, et al., Energy Proced. 114 (2017) 211–219.
doi: 10.1016/j.egypro.2017.03.1163
A. Hanif, S. Dasgupta, S. Divekar, et al., Chem. Eng. J. 236 (2014) 91–99.
doi: 10.1016/j.cej.2013.09.076
M. Gunnarsson, D. Bernin, Å. Östlund, et al., Green Chem. 20 (2018) 3279–3286.
doi: 10.1039/C8GC01092G
C.Z. He, H.T. Wang, L. Fu, et al., Chin. Chem. Lett. 33 (2021) 990–994.
H. Guo, W. Zhang, N. Lu, et al., J. Phys. Chem. C 119 (2015) 6912–6917.
doi: 10.1021/acs.jpcc.5b00681
X. Tan, L. Kou, S.C. Smith, ChemSusChem 8 (2015) 2987–2993.
doi: 10.1002/cssc.201500026
W. Liu, Y.H. Zhao, J. Nguyen, et al., Carbon 47 (2009) 3452–3460.
doi: 10.1016/j.carbon.2009.08.012
Z.M. Ao, F.M. Peeters, Appl. Phys. Lett. 96 (2010) 253106.
doi: 10.1063/1.3456384
A.V. Kityk, R. Czaplicki, A. Klopperpieper, et al., Appl. Phys. Lett. 96 (2010) 061911.
doi: 10.1063/1.3315941
Q. Sun, G.Q. Qin, Y.Y. Ma, et al., Nanoscale 9 (2017) 19–24.
doi: 10.1039/C6NR07001A
Y. Jia, F. Li, K. Fan, et al., Adv. Powder Mater. 1 (2021) 100012.
S.L. Li, X. Kan, L.Y. Gan, et al., Appl. Surf. Sci. 556 (2021) 149779.
doi: 10.1016/j.apsusc.2021.149779
Y. Sun, Y. Wang, H. Li, et al., J. Energy Chem. 62 (2021) 51–70.
doi: 10.1016/j.jechem.2021.03.001
H. Li, Z. Zhao, Q. Cai, et al., J. Mater. Chem. A 8 (2020) 4533–4543.
doi: 10.1039/C9TA13599E
H. Yin, L.Y. Gan, P. Wang, J. Mater. Chem. A 8 (2020) 3910–3917.
doi: 10.1039/C9TA13700A
C. Cao, D.D. Ma, J.F. Gu, et al., Angew. Chem. Int. Ed. 59 (2020) 15014–15020.
doi: 10.1002/anie.202005577
J. Han, S. Zhang, Q. Song, et al., Sustain. Energy Fuels 5 (2021) 509–517.
doi: 10.1039/D0SE01515F
X. Li, J. Liu, J. Huang, et al., Acta Phys. Chim. Sin. 37 (2020) 2010030.
D. Jiao, Y. Liu, Q. Cai, et al., J. Mater. Chem. A 9 (2021) 1240–1251.
doi: 10.1039/D0TA09496J
W.W. Fu, M. Zhang, Z.R. Shen, Chin. J. Struct. Chem. 40 (2021) 797–805.
C. Liu, Q. Li, C. Wu, et al., J. Am. Chem. Soc. 141 (2019) 2884–2888.
doi: 10.1021/jacs.8b13165
X. Chen, W.J. Ong, X. Zhao, et al., J. Energy Chem. 58 (2021) 577–585.
doi: 10.1016/j.jechem.2020.10.043
C. He, J. Wang, L. Fu, et al., Chin. Chem. Lett. 33 (2022) 1051–1057.
doi: 10.1016/j.cclet.2021.09.009
L. Xie, L. Wang, W. Zhao, et al., Nat. Chem. 12 (2021) 5070.
Y. Liu, Q. Feng, W. Liu, et al., Nano Energy 81 (2021) 105641.
doi: 10.1016/j.nanoen.2020.105641
H. Zhang, W. Wei, S. Wang, et al., J. Mater. Chem. A 9 (2021) 4082–4090.
doi: 10.1039/D0TA10767K
X.H. Chen, Q. Zhang, L.L. Wu, et al., Mater. Today Phys. 15 (2020) 100268.
doi: 10.1016/j.mtphys.2020.100268
H. Jing, P. Zhu, X. Zheng, et al., Adv. Powder Mater. 1 (2021) 100013.
Y. Li, Y. Liao, P.V.R. Schleyer, et al., Nanoscale 6 (2014) 10784–10791.
doi: 10.1039/C4NR01972E
J. Dai, X. Wu, J. Yang, et al., J. Phys. Chem. Lett. 5 (2014) 2058–2065.
doi: 10.1021/jz500674e
Y. Xu, J. Dai, X.C. Zeng, J. Phys. Chem. Lett. 7 (2016) 302–307.
doi: 10.1021/acs.jpclett.5b02695
R.Z. Qin, Y. Wang, Q.H. Zhao, et al., Chin. J. Struct. Chem. 39 (2020) 605–614.
R. Almeida, A. Banerjee, S. Chakraborty, et al., ChemPhysChem 19 (2018) 148–152.
doi: 10.1002/cphc.201700768
W. Li, Q. Jiang, D. Li, et al., Chin. Chem. Lett. 32 (2021) 2803–2806.
doi: 10.1016/j.cclet.2021.01.026
R. Rahimi, M. Solimannejad, Int. J. Quantum Chem. 121 (2021) e26528.
B. Delley, J. Chem. Phys. 113 (2000) 7756–7764.
doi: 10.1063/1.1316015
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
doi: 10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132 (2010) 154104.
doi: 10.1063/1.3382344
D.J. Chadi, Phys. Rev. B 16 (1977) 1746–1747.
doi: 10.1103/PhysRevB.16.1746
X. Li, T. Guo, L. Zhu, et al., Chem. Eng. J. 338 (2018) 92–98.
doi: 10.1016/j.cej.2017.12.113
M.D. Esrafili, J. Mol. Graph. Model. 90 (2019) 192–198.
doi: 10.1016/j.jmgm.2019.05.008
Q. Yue, Z. Shao, S. Chang, et al., Nanoscale Res. Lett. 8 (2013) 425.
doi: 10.1186/1556-276X-8-425
V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, J. Phys. Chem. A 115 (2011) 5461–5466.
doi: 10.1021/jp202489s
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173