N-Heterocyclic carbene catalyzed C-acylation reaction for access to linear aminoenones
-
* Corresponding authors.
E-mail addresses: zcjin@gzu.edu.cn (Z. Jin), robinchi@ntu.edu.sg (Y.R. Chi).
Citation:
Jie Lv, Yingling Nong, Kai Chen, Qingyun Wang, Jiamiao Jin, Tingting Li, Zhichao Jin, Yonggui Robin Chi. N-Heterocyclic carbene catalyzed C-acylation reaction for access to linear aminoenones[J]. Chinese Chemical Letters,
;2023, 34(1): 107570.
doi:
10.1016/j.cclet.2022.05.084
L.A. Wessjohann, W. Brandt, T. Thiemann, Chem. Rev. 103 (2003) 1625–1648.
doi: 10.1021/cr0100188
T. Mori, K. Ujihara, O. Matsumoto, K. Yanagi, N. Matsuo, J. Fluorine Chem. 128 (2007) 1174–1181.
doi: 10.1016/j.jfluchem.2007.07.016
K.A. Menear, C. Adcock, R. Boulter, et al., J. Med. Chem. 51 (2008) 6581–6591.
doi: 10.1021/jm8001263
N. Ty, J. Kaffy, A. Arrault, et al., Bioorg. Med. Chem. Lett. 19 (2009) 1318–1322.
doi: 10.1016/j.bmcl.2009.01.062
F. Chang, S. Dutta, J.J. Becnel, A.S. Estep, M. Mascal, J. Agric. Food Chem. 62 (2014) 476–480.
doi: 10.1021/jf4045843
J.O. Link, J.G. Taylor, L. Xu, et al., J. Med. Chem. 57 (2014) 2033–2046.
doi: 10.1021/jm401499g
Y. Yoshida, T. Terauchi, Y. Naoe, et al., Bioorg. Med. Chem. 22 (2014) 6071–6088.
doi: 10.1016/j.bmc.2014.08.034
Y. Yoshida, Y. Naoe, T. Terauchi, et al., J. Med. Chem. 58 (2015) 4648–4664.
doi: 10.1021/acs.jmedchem.5b00217
T.T. Talele, J. Med. Chem. 59 (2016) 8712–8756.
doi: 10.1021/acs.jmedchem.6b00472
A.Z. Burmudzija, J.M. Muskinja, M.M. Kosanic, et al., Chem. Biodivers. 14 (2017) e1700077.
doi: 10.1002/cbdv.201700077
D. Nam, V. Steck, R.J. Potenzino, R. Fasan, J. Am. Chem. Soc. 143 (2021) 2221–2231.
doi: 10.1021/jacs.0c09504
D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 107 (2007) 5606–5655.
doi: 10.1021/cr068372z
A.T. Biju, N. Kuhl, F. Glorius, Acc. Chem. Res. 44 (2011) 1182–1195.
doi: 10.1021/ar2000716
X. Bugaut, F. Glorius, Chem. Soc. Rev. 41 (2012) 3511–3522.
doi: 10.1039/c2cs15333e
D.T. Cohen, K.A. Scheidt, Chem. Sci. 3 (2012) 53–57.
doi: 10.1039/C1SC00621E
A. Grossmann, D. Enders, Angew. Chem. Int. Ed. 51 (2012) 314–325.
doi: 10.1002/anie.201105415
S.J. Ryan, L. Candish, D.W. Lupton, Chem. Soc. Rev. 42 (2013) 4906–4917.
doi: 10.1039/c3cs35522e
S.J. Connon, Angew. Chem. Int. Ed. 53 (2014) 1203–1205.
doi: 10.1002/anie.201309256
M.N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 510 (2014) 485–496.
doi: 10.1038/nature13384
J. Mahatthananchai, J.W. Bode, Acc. Chem. Res. 47 (2014) 696–707.
doi: 10.1021/ar400239v
D.M. Flanigan, F. Romanov-Michailidis, N.A. White, T. Rovis, Chem. Rev. 115 (2015) 9307–9387.
doi: 10.1021/acs.chemrev.5b00060
R.S. Menon, A.T. Biju, V. Nair, Chem. Soc. Rev. 44 (2015) 5040–5052.
doi: 10.1039/C5CS00162E
M.H. Wang, K.A. Scheidt, Angew. Chem. Int. Ed. 55 (2016) 14912–14922.
doi: 10.1002/anie.201605319
C. Zhang, J.F. Hooper, D.W. Lupton, ACS Catal. 7 (2017) 2583–2596.
doi: 10.1021/acscatal.6b03663
K.J.R. Murauski, A.A. Jaworski, K.A. Scheidt, Chem. Soc. Rev. 47 (2018) 1773–1782.
doi: 10.1039/C7CS00386B
X.K. Chen, H.L. Wang, Z.C. Jin, Y.R. Chi, Chin. J. Chem. 38 (2020) 1167–1202.
doi: 10.1002/cjoc.202000107
A. Ghosh, A.T. Biju, Angew. Chem. Int. Ed. 60 (2021) 13712–13724.
doi: 10.1002/anie.202012581
X. Yang, H. Wang, Z. Jin, Y.R. Chi, Green Synth. Catal. 2 (2021) 295–298.
doi: 10.1016/j.gresc.2021.05.002
C. Zhao, S.A. Blaszczyk, J. Wang, Green Synth. Catal. 2 (2021) 198–215.
doi: 10.1016/j.gresc.2021.03.003
M. Shibasaki, M. Kanai, Chem. Rev. 108 (2008) 2853–2873.
doi: 10.1021/cr078340r
P. Hoyos, J.V. Sinisterra, F. Molinari, A.R. Alcantara, P. Dominguez de Maria, Acc. Chem. Res. 43 (2010) 288–299.
doi: 10.1021/ar900196n
B.I. Roman, N. De Kimpe, C.V. Stevens, Chem. Rev. 110 (2010) 5914–5988.
doi: 10.1021/cr900409h
T. Patonay, K. Konya, E. Juhasz-Toth, Chem. Soc. Rev. 40 (2011) 2797–2847.
doi: 10.1039/c0cs00101e
Q. Deng, Q. Zheng, B. Zuo, T. Tu, Green Synth. Catal. 1 (2020) 75–78.
doi: 10.1016/j.gresc.2020.06.001
L. Hu, J.D. Jiang, J. Qu, et al., Bioorg. Med. Chem. Lett. 17 (2007) 3613–3617.
doi: 10.1016/j.bmcl.2007.04.048
E.N. Voronova, I.V. Konyukhov, O.A. Koksharova, et al., J. Phycol. 55 (2019) 840–857.
doi: 10.1111/jpy.12861
Z. Ma, X. Zhao, J. Zhao, et al., Front. Bioeng. Biotech. 8 (2020) 620537.
doi: 10.3389/fbioe.2020.620537
S. Yasuda, T. Ishii, S. Takemoto, H. Haruki, H. Ohmiya, Angew. Chem. Int. Ed. 57 (2018) 2938–2942.
doi: 10.1002/anie.201712811
H. Haruki, S. Yasuda, K. Nagao, H. Ohmiya, Chemistry 25 (2019) 724–727.
doi: 10.1002/chem.201805955
T. Ishii, Y. Kakeno, K. Nagao, H. Ohmiya, J. Am. Chem. Soc. 141 (2019) 3854–3858.
doi: 10.1021/jacs.9b00880
T. Ishii, K. Ota, K. Nagao, H. Ohmiya, J. Am. Chem. Soc. 141 (2019) 14073–14077.
doi: 10.1021/jacs.9b07194
N. Ohnishi, S. Yasuda, K. Nagao, H. Ohmiya, Asian J. Org. Chem. 8 (2019) 1133–1135.
doi: 10.1002/ajoc.201900303
R. Song, Y.R. Chi, Angew. Chem. Int. Ed. 58 (2019) 8628–8630.
doi: 10.1002/anie.201902792
A.V. Bay, K.P. Fitzpatrick, R.C. Betori, K.A. Scheidt, Angew. Chem. Int. Ed. 59 (2020) 9143–9148.
doi: 10.1002/anie.202001824
T. Ishii, K. Nagao, H. Ohmiya, Chem. Sci. 11 (2020) 5630–5636.
doi: 10.1039/d0sc01538e
Y. Kakeno, M. Kusakabe, K. Nagao, H. Ohmiya, ACS Catal. 10 (2020) 8524–8529.
doi: 10.1021/acscatal.0c02849
J.L. Li, Y.Q. Liu, W.L. Zou, et al., Angew. Chem. Int. Ed. 59 (2020) 1863–1870.
doi: 10.1002/anie.201912450
H. Ohmiya, ACS Catal. 10 (2020) 6862–6869.
doi: 10.1021/acscatal.0c01795
B. Zhang, Q. Peng, D. Guo, J. Wang, Org. Lett. 22 (2020) 443–447.
doi: 10.1021/acs.orglett.9b04203
T. Ishii, K. Nagao, H. Ohmiya, Tetrahedron 91 (2021) 132212.
doi: 10.1016/j.tet.2021.132212
M.S. Liu, L. Min, B.H. Chen, W. Shu, ACS Catal. 11 (2021) 9715–9721.
doi: 10.1021/acscatal.1c02890
Y. Matsuki, N. Ohnishi, Y. Kakeno, et al., Nat. Commun. 12 (2021) 3848.
doi: 10.1038/s41467-021-24144-2
D.A. DiRocco, T. Rovis, J. Am. Chem. Soc. 133 (2011) 10402–10405.
doi: 10.1021/ja203810b
X. Fang, X. Chen, H. Lv, Y.R. Chi, Angew. Chem. Int. Ed. 50 (2011) 11782–11785.
doi: 10.1002/anie.201105812
L.H. Sun, Z.Q. Liang, W.Q. Jia, S. Ye, Angew. Chem. Int. Ed. 52 (2013) 5803–5806.
doi: 10.1002/anie.201301304
Q.Y. Toh, A. McNally, S. Vera, N. Erdmann, M.J. Gaunt, J. Am. Chem. Soc. 135 (2013) 3772–3775.
doi: 10.1021/ja400051d
A. Nikolaou, G. Kokotos, V. Magrioti, Tetrahedron 72 (2016) 7628–7632.
doi: 10.1016/j.tet.2016.10.023
V. Nair, B.P. Babu, S. Vellalath, E. Suresh, Chem. Commun. (2008) 747–749.
D.S. Illera, S. Suresh, M. Moccia, et al., Tetrahedron Lett. 53 (2012) 1808–1811.
doi: 10.1016/j.tetlet.2012.01.118
L. Wang, S. Li, P. Chauhan, et al., Chemistry 22 (2016) 5123–5127.
doi: 10.1002/chem.201600515
C. Guo, M. Schedler, C.G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 53 (2014) 10232–10236.
doi: 10.1002/anie.201405381
X.Y. Chen, S. Li, H. Sheng, et al., Chemistry 23 (2017) 13042–13045.
doi: 10.1002/chem.201703579
A. Patra, A. Bhunia, S.R. Yetra, R.G. Gonnade, A.T. Biju, Org. Chem. Front. 2 (2015) 1584–1588.
doi: 10.1039/C5QO00242G
Y. Xie, Y. Que, T. Li, et al., Org. Biomol. Chem. 13 (2015) 1829–1835.
doi: 10.1039/C4OB01706D
L.T. Shen, W.Q. Jia, S. Ye, Angew. Chem. Int. Ed. 52 (2013) 585–588.
doi: 10.1002/anie.201207405
H. Yao, Y. Zhou, X. Chen, et al., J. Org. Chem. 81 (2016) 8888–8899.
doi: 10.1021/acs.joc.6b01596
L. Shen, W. Jia, S. Ye, Chin. J. Chem. 32 (2014) 814–818.
doi: 10.1002/cjoc.201400411
J.M. Hu, J.Q. Zhang, B.B. Sun, et al., Org. Lett. 21 (2019) 8582–8586.
doi: 10.1021/acs.orglett.9b03178
T. Zhu, Y. Liu, M. Smetankova, et al., Angew. Chem. Int. Ed. 58 (2019) 15778–15782.
doi: 10.1002/anie.201910183
X.Y. Chen, Q. Liu, P. Chauhan, et al., Angew. Chem. Int. Ed. 56 (2017) 6241–6245.
doi: 10.1002/anie.201702881
H. Huang, Q. -Z. Li, Y. -Q. Liu, et al., Org. Chem. Front. 7 (2020) 3862–3867.
doi: 10.1039/d0qo00868k
S.R. Yetra, S. Mondal, S. Mukherjee, R.G. Gonnade, A.T. Biju, Angew. Chem. Int. Ed. 55 (2016) 268–272.
doi: 10.1002/anie.201507802
A.A. Rajkiewicz, N. Wojciechowska, M. Kalek, ACS Catal. 10 (2019) 831–841.
Y. Gao, D. Liu, Z. Fu, W. Huang, Org. Lett. 21 (2019) 926–930.
doi: 10.1021/acs.orglett.8b03892
S. Bera, C.G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 56 (2017) 7402–7406.
doi: 10.1002/anie.201701485
S.S. Sohn, J.W. Bode, Angew. Chem. Int. Ed. 45 (2006) 6021–6024.
doi: 10.1002/anie.200601919
J.W. Bode, S.S. Sohn, J. Am. Chem. Soc. 129 (2007) 13798–13799.
doi: 10.1021/ja0768136
J. Lv, J. Xu, X. Pan, Z. Jin, Y.R. Chi, Sci. China Chem. 64 (2021) 985–990.
doi: 10.1007/s11426-021-9989-1
J.L. Olivares-Romero, Z. Li, H. Yamamoto, J. Am. Chem. Soc. 134 (2012) 5440–5443.
doi: 10.1021/ja211880s
J. Cheng, Z. Huang, Y.R. Chi, Angew. Chem. Int. Ed. 52 (2013) 8592–8596.
doi: 10.1002/anie.201303247
H. Wang, S. Gu, Q. Yan, L. Ding, F.E. Chen, Green Synth. Catal. 1 (2020) 12–25.
doi: 10.1016/j.gresc.2020.05.005
W. Yang, D. Ma, Y. Zhou, et al., Angew. Chem. Int. Ed. 57 (2018) 12097–12101.
doi: 10.1002/anie.201806674
B. Cardinal-David, D.E. Raup, K.A. Scheidt, J. Am. Chem. Soc. 132 (2010) 5345–5347.
doi: 10.1021/ja910666n
D.T. Cohen, B. Cardinal-David, K.A. Scheidt, Angew. Chem. Int. Ed. 50 (2011) 1678–1682.
doi: 10.1002/anie.201005908
J. Mo, X. Chen, Y.R. Chi, J. Am. Chem. Soc. 134 (2012) 8810–8813.
doi: 10.1021/ja303618z
Z. Wu, F. Li, J. Wang, Angew. Chem. Int. Ed. 54 (2015) 1629–1633.
doi: 10.1002/anie.201410030
Q. Jia, Y. Li, Y. Lin, Q. Ren, Catalysts 9 (2019) 863.
doi: 10.3390/catal9100863
T. Li, C. Mou, P. Qi, et al., Angew. Chem. Int. Ed. 60 (2021) 9362–9367.
doi: 10.1002/anie.202010606
K. Wang, C. Xu, X. Hu, et al., Chem. Commun. 57 (2021) 8917–8920.
doi: 10.1039/d1cc03685h
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495
Lingyun Shen , Shenxiang Yin , Qingshu Zheng , Zheming Sun , Wei Wang , Tao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
Jingping Hu , Jing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14–epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659