Large negative thermal expansion in GdFe(CN)6 driven by unusual low-frequency modes
-
* Corresponding authors.
E-mail addresses: qilonggao@zzu.edu.cn (Q. Gao), qsun@zzu.edu.cn (Q. Sun).
Citation:
Qilong Gao, Yixin Jiao, Andrea Sanson, Erjun Liang, Qiang Sun. Large negative thermal expansion in GdFe(CN)6 driven by unusual low-frequency modes[J]. Chinese Chemical Letters,
;2023, 34(5): 107564.
doi:
10.1016/j.cclet.2022.05.078
J. Chen, L. Hu, J. Deng, X. Xing, Chem. Soc. Rev. 44 (2004) 3522.
Y. Z. Song, N. K. Shi, S. Q. Deng, et al., Prog. Mater. Sci. 121 (2021) 100835.
doi: 10.1016/j.pmatsci.2021.100835
E. Liang, Q. Sun, H. Yuan, et al., Front. Phys. 16 (2021) 53302.
doi: 10.1007/s11467-021-1070-0
N. Shi, Y. Z. Song, X. R. Xing, J. Chen, Coord. Chem. Rev. 449 (2021) 214204.
doi: 10.1016/j.ccr.2021.214204
Q. Sun, K. Jin, Y. Huang, et al., Chin. Chem. Lett. 32 (2021) 1515-1518.
doi: 10.1016/j.cclet.2020.09.046
H. Liu, W. Sun, Z. Zhang, L. N. Lovings, C. Lind, Solids 2 (2021) 87-107.
doi: 10.3390/solids2010005
M. T. Dove, H. Fang, Rep. Prog. Phys. 79 (2016) 066503.
doi: 10.1088/0034-4885/79/6/066503
R. Mittal, M. K. Gupta, S. L. Chaplot, Prog. Mater. Sci. 92 (2018) 360-445.
doi: 10.1016/j.pmatsci.2017.10.002
A. Sanson, Microstructures 1 (2021) 2021004.
T. Yokoyama, Microstructures 1 (2021) 2021003.
J. Chen, K. Nittala, J. S. Forrester, et al., J. Am. Chem. Soc. 133 (2011) 11114-11117.
doi: 10.1021/ja2046292
Z. Pan, X. Jiang, T. Nishikubo, et al., Chem. Mater. 31 (2019) 6187-6192.
doi: 10.1021/acs.chemmater.9b01969
Y. W. Long, N. Hayashi, T. Saito, et al., Nature 458 (2009) 60-63.
doi: 10.1038/nature07816
M. Azuma, K. Oka, K. Nabetani, Sci. Technol. Adv. Mater. 16 (2015) 034904.
doi: 10.1088/1468-6996/16/3/034904
T. A. Mary, J. S. O. Evans, T. Vogt, A. W. Sleight, Science 272 (1996) 90-92.
doi: 10.1126/science.272.5258.90
M. G. Tucker, A. L. Goodwin, M. T. Dove, et al., Phys. Rev. Lett. 95 (2005) 255501.
doi: 10.1103/PhysRevLett.95.255501
D. Cao, F. Bridges, G. R. Kowach, A. P. Ramirez, Phys. Rev. Lett. 89 (2002) 215902.
doi: 10.1103/PhysRevLett.89.215902
F. Bridges, T. Keiber, P. Juhas, et al., Phys. Rev. Lett. 112 (2014) 045505.
doi: 10.1103/PhysRevLett.112.045505
A. Sanson, Chem. Mater. 26 (2014) 3716-3720.
doi: 10.1021/cm501107w
Q. L. Gao, J. Chen, Q. Sun, et al., Angew. Chem. Int. Ed. 56 (2017) 9023-9028.
doi: 10.1002/anie.201702955
J. P. Attfield, Front. Chem. 6 (2018) 371.
doi: 10.3389/fchem.2018.00371
Q. L. Gao, E. J. Liang, X. R. Xing, J. Chen, Chem. J. Chin. U. 41 (2020)388-400.
S. J. Hibble, G. B. Wood, E. J. Bilbé, et al., Z. Kristallogr. 225 (2010) 457-462.
S. J. Hibble, A. M. Chippindale, A. H. Pohl, A. C. Hannon, Angew. Chem. Int. Ed. 46 (2007) 7116–7118.
doi: 10.1002/anie.200701246
J. W. Zwanziger, Phys. Rev. B 76 (2007) 052102.
doi: 10.1103/PhysRevB.76.052102
L. G. Andrew, W. C. Karena, J. K. Cameron, J. Am. Chem. Soc. 127 (2005) 17980–17981.
doi: 10.1021/ja056460f
S. Margadonna, K. Prassides, A. N. Fitch, J. Am. Chem. Soc. 126 (2004) 15390–15391.
doi: 10.1021/ja044959o
Q. L. Gao, Y. Jiao, Y. Zheng, et al., Results Phys. 36 (2022) 105410.
doi: 10.1016/j.rinp.2022.105410
Q. L. Gao, N. Shi, Q. Sun, et al., Inorg. Chem. 57 (2018) 10918-10924.
doi: 10.1021/acs.inorgchem.8b01526
Y. Li, Q. L. Gao, D. H. Chang, et al., J. Phys. Condens. Matter 32 (2020) 455703.
doi: 10.1088/1361-648x/aba777
M. Li, Y. Li, C. Y. Wang, Q. Sun, Chin. Phys. Lett. 36 (2019) 066301.
doi: 10.1088/0256-307x/36/6/066301
S. G. Duyker, V. K. Peterson, G. J. Kearley, A. J. Ramirez-Cuesta, C. J. Kepert, Angew. Chem. Int. Ed. 52 (2013) 5266-270.
doi: 10.1002/anie.201300619
Q. L. Gao, J. Q. Wang, A. Sanson, et al., J. Am. Chem. Soc. 142 (2020) 6935–6939.
doi: 10.1021/jacs.0c02188
C.Y. Wang, Q.L. Gao, A. Sanson, Y. Jia, Chin. Phys. B 31 (2022) 066501.
doi: 10.1088/1674-1056/ac6019
A. L. Goodwin, D. A. Keen, M. G. Tucker, Proc. Natl. Acad. Sci. 48 (2008) 18708–18713.
doi: 10.1073/pnas.0804789105
J. L. Korcok, M. J. Katz, D. B. Leznoff, J. Am. Chem. Soc. 131 (2009) 4866–4871.
doi: 10.1021/ja809631r
B. Singh, M. K. Gupta, R. Mittal, et al., J. Phys. Chem. C 124 (2020) 7216-7228.
doi: 10.1021/acs.jpcc.9b11500
A. B. Cairns, J. Catafesta, C. Levelut, et al., Nat. Mater. 12 (2013) 212–216.
doi: 10.1038/nmat3551
P. Ding, E. J. Liang, J. Jia, Z. Y. Du, J. Phys. Condens. Matter 20 (2008) 275224.
doi: 10.1088/0953-8984/20/27/275224
T. R. Ravindran, A. K. Arora, S. Chandra, M. C. Valsakumar, N. C. Shehar, Phys. Rev. B 76 (2007) 054302.
doi: 10.1103/PhysRevB.76.054302
K. W. Chapmana, M. Hagenb, C. J. Keperta, Phys. B 385 (2006) 60–62.
R. Mittal, S. L. Chaplot, H. Schober, Appl. Phys. Lett. 95 (2009) 201901.
doi: 10.1063/1.3264963
R. Mittal, M. Zbiri, H. Schober, et al., Phys. Rev. B 83 (2011) 024301.
doi: 10.1103/PhysRevB.83.024301
S. d'Ambrumenil, M. Zbiri, A. M. Chippindale, Phys. Rev. B 99 (2019) 024309.
doi: 10.1103/PhysRevB.99.024309
A. L. Goodwin, M. Calleja, M. J. Conterio, et al., Science 319 (2008) 794–797.
doi: 10.1126/science.1151442
B. R. Mullaney, L. Goux-Capes, D. J. Price, et al., Nat. Commun. 8 (2017) 1–6.
doi: 10.1038/s41467-016-0009-6
T. A. Mary, J. S. O. Evans, T. Vogt, A. W. Sleight, Science 272 (1996) 90–92.
doi: 10.1126/science.272.5258.90
B. K. Greve, K. L. Martin, P. L. Lee, et al., J. Am. Chem. Soc. 132 (2010) 15496–15498.
doi: 10.1021/ja106711v
Q. L. Gao, X. W. Shi, A. Venier, et al., Inorg. Chem. 59 (2020) 14852–14855.
doi: 10.1021/acs.inorgchem.0c02029
Q. L. Gao, Q. Sun, A. Venier, et al., Sci. China Mater. (2021) 1–5.
A. Sanson, M. Giarola, G. Mariotto, et al., Mater. Chem. Phys. 180 (2016) 213–218.
doi: 10.1016/j.matchemphys.2016.05.067
Q. L. Gao, Y. Sun, N. Shi, et al., Scr. Mater. 187 (2020) 119–124.
doi: 10.1016/j.scriptamat.2020.05.041
N. P. Salke, M. K. Gupta, R. Rao, et al., J. Appl. Phys. 117 (2015) 235902.
doi: 10.1063/1.4922744
Z. Wei, X. Jiang, A. E. Phillips, Z. Lin, M. T. Dove, Phys. Rev. B 104 (2021) 174310.
doi: 10.1103/PhysRevB.104.174310
Q. L. Gao, Y. X. Jiao, G. Li. Chin. Phys. B 31 (2022) 046501.
doi: 10.1088/1674-1056/ac3ecf
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Zhexin Chen , Yuqing Shi , Fang Zhong , Kai Zhang , Furong Zhang , Shenghong Xie , Zhongbin Cheng , Qian Zhou , Yi-You Huang , Hai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Shuai Liang , Wen-Jing Jiang , Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Rongliang Deng , Yihang Chen , Xiaotong Fan , Guolong Chen , Shuli Wang , Changzhi Yu , Xiao Yang , Tingzhu Wu , Zhong Chen , Yue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268