Switching the coordination geometry to enhance erbium(Ⅲ) single-molecule magnets
-
* Corresponding authors.
E-mail addresses: zdfu@pku.edu.cn (Z. Fu), yanzhen@nankai.edu.cn (Y.-Z. Zheng).
Citation:
Qian-Cheng Luo, Ning Ge, Yuan-Qi Zhai, Tengbo Wang, Lin Sun, Qi Sun, Fanni Li, Zhendong Fu, Yan-Zhen Zheng. Switching the coordination geometry to enhance erbium(Ⅲ) single-molecule magnets[J]. Chinese Chemical Letters,
;2023, 34(5): 107547.
doi:
10.1016/j.cclet.2022.05.061
L. Bogani, W. Wernsdorfer, Nat. Mater. 7 (2008) 179–186.
doi: 10.1038/nmat2133
M.R. Wasielewski, M.D.E. Forbes, N.L. Frank, et al., Nat. Rev. Chem. 4 (2020) 490–504.
doi: 10.1038/s41570-020-0200-5
S.L. Bayliss, D.W. Laorenza, P.J. Mintun, et al., Science 370 (2020) 1309–1312.
doi: 10.1126/science.abb9352
N. Ishikawa, M. Sugita, T. Ishikawa, S.Y. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 125 (2003) 8694–8695.
doi: 10.1021/ja029629n
V.S. Parmar, D.P. Mills, R.E.P. Winpenny, Chem. Eur. J. 27 (2021) 7625–7645.
doi: 10.1002/chem.202100085
X. Liu, X. Feng, K.R. Meihaus, et al., Angew. Chem. Int. Ed. 59 (2020) 10610–10618.
doi: 10.1002/anie.202002673
K. Liu, X.J. Zhang, X.X. Meng, et al., Chem. Soc. Rev. 45 (2016) 2423–2439.
doi: 10.1039/C5CS00770D
X.X. Meng, M.M. Wang, X.S. Gou, et al., Inorg. Chem. Front. 8 (2021) 2349–2355.
doi: 10.1039/d1qi00145k
S.W. Zhang, W. Shi, P. Cheng, Coord. Chem. Rev. 352 (2017) 108–150.
doi: 10.1016/j.ccr.2017.08.022
F.S. Guo, B.M. Day, Y.C. Chen, et al., Science 362 (2018) 1400–1403.
doi: 10.1126/science.aav0652
Y.S. Ding, N.F. Chilton, R.E.P. Winpenny, Y.Z. Zheng, Angew. Chem. Int. Ed. 55 (2016) 16071–16074.
doi: 10.1002/anie.201609685
C.A. Gould, K.R. Mcclain, D. Reta, et al., Science 375 (2022) 198–202.
doi: 10.1126/science.abl5470
Y.S. Meng, C.H. Wang, Y.Q. Zhang, et al., Inorg. Chem. Front. 3 (2016) 828–835.
doi: 10.1039/C6QI00028B
L. Münzfeld, C. Schoo, S. Bestgen, et al., Nat. Commun. 10 (2019) 3135.
doi: 10.1038/s41467-019-10976-6
L. Ungur, J.J. Le Roy, I. Korobkov, M. Murugesu, L.F. Chibotaru, Angew. Chem. Int. Ed. 53 (2014) 4413–4417.
doi: 10.1002/anie.201310451
K.R. Meihaus, J.R. Long, J. Am. Chem. Soc. 135 (2013) 17952–17957.
doi: 10.1021/ja4094814
P. Zhang, L. Zhang, C. Wang, et al., J. Am. Chem. Soc. 136 (2014) 4484–4487.
doi: 10.1021/ja500793x
H.T. Zhang, R. Nakanishi, K. Katoh, et al., Dalton Trans. 47 (2018) 302–305.
doi: 10.1039/C7DT04053A
J.D. Rinehart, J.R. Long, Chem. Sci. 2 (2011) 2078–2085.
doi: 10.1039/c1sc00513h
S.K. Gupta, T. Rajeshkumar, G. Rajaraman, R. Murugavel, Chem. Sci. 7 (2016) 5181–5191.
doi: 10.1039/C6SC00279J
M.A. Sørensen, U.B. Hansen, M. Perfetti, et al., Nat. Commun. 9 (2018) 1292.
doi: 10.1038/s41467-018-03706-x
J.L. Liu, Y.C. Chen, Y.Z. Zheng, et al., Chem. Sci. 4 (2013) 3310–3316.
doi: 10.1039/c3sc50843a
Z.H. Li, Y.Q. Zhai, W.P. Chen, Y.S. Ding, Y.Z. Zheng, Chem. Eur. J. 25 (2019) 16219–16224.
doi: 10.1002/chem.201904325
X.L. Ding, Y.Q. Zhai, T. Han, et al., Chem. Eur. J. 27 (2021) 2623–2627.
doi: 10.1002/chem.202003931
J. Wu, O. Cador, X.L. Li, et al., Inorg. Chem. 56 (2017) 11211–11219.
doi: 10.1021/acs.inorgchem.7b01582
M.A. AlDamen, J.M. Clemente-Juan, E. Coronado, C. Martí-Gastaldo, A. Gaita-Ariño, J. Am. Chem. Soc. 130 (2008) 8874–8875.
doi: 10.1021/ja801659m
C.R. Ganivet, B. Ballesteros, G. de la Torre, et al., Chem. Eur. J. 19 (2013) 1457–1465.
doi: 10.1002/chem.201202600
T. Watanabe, Y. Ishida, T. Matsuo, H. Kawaguchi, Dalton Trans. 39 (2010) 484–491.
doi: 10.1039/B911082H
A.J. Brown, D. Pinkowicz, M.R. Saber, K.R. Dunbar, Angew. Chem. Int. Ed. 54 (2015) 5864–5868.
doi: 10.1002/anie.201411190
J. Long, B.G. Shestakov, D. Liu, et al., Chem. Commun. 53 (2017) 4706–4709.
doi: 10.1039/C7CC02213A
I.F. Galván, M. Vacher, A. Alavi, et al., J. Chem. Theory Comput. 15 (2019) 5925–5964.
doi: 10.1021/acs.jctc.9b00532
S.K. Singh, B. Pandey, G. Velmurugan, G. Rajaraman, Dalton Trans. 46 (2017) 11913–11924.
doi: 10.1039/C6DT03568J
T.A. Bazhenova, V.A. Kopotkov, D.V. Korchagin, et al., Molecules 26 (2021) 6908.
doi: 10.3390/molecules26226908
A. Lunghi, F. Totti, R. Sessoli, S. Sanvito, Nat. Commun. 8 (2016) 14620.
F. Lu, M.M. Ding, J.X. Li, B.L. Wang, Y.Q. Zhang, Dalton Trans. 49 (2020) 14576–14583.
doi: 10.1039/d0dt02868a
B. Yin, C.C. Li, Phys. Chem. Chem. Phys. 22 (2020) 9923–9933.
doi: 10.1039/d0cp00933d
S. Zhang, J. Tang, J. Zhang, et al., Inorg. Chem. 60 (2021) 816–830.
doi: 10.1021/acs.inorgchem.0c02863
Y. Dong, L. Zhu, B. Yin, X. Zhu, D. Li, Dalton Trans. 50 (2021) 17328–17337.
doi: 10.1039/d1dt02925h
Lu Zhang , Jin Xiong , Yin-Shan Meng , Tao Liu . Structures and magnetic relaxation properties of cyclopentadienyl/β-diketonate/trispyrazolylborate hybridized dysprosium single-molecule magnets. Chinese Chemical Letters, 2023, 34(8): 108055-1-108055-5. doi: 10.1016/j.cclet.2022.108055
Xiao-Hong Miao , Song-De Han , Sui-Jun Liu , Xian-He Bu . Two lanthanide(III)-copper(II) chains based on [Cu2Ln2] clusters exhibiting high stability, magnetocaloric effect and slow magnetic relaxation. Chinese Chemical Letters, 2014, 25(6): 829-834. doi: 10.1016/j.cclet.2014.05.025
Mei-Hui Yu , Xue Jiang , Song-De Han , Qing-Lun Wang , Xian-He Bu . Stepwise assembly of heterometallic 3d-4f chain exhibiting slow magnetic relaxation. Chinese Chemical Letters, 2016, 27(03): 317-320. doi: 10.1016/j.cclet.2016.01.001
Chenlu Wang , Suling Xu , Ning Ren , Jianjun Zhang . Construction, Thermochemistry, and Fluorescence Properties of Novel Lanthanide Complexes Synthesized from Halogenated Aromatic Carboxylic Acids and Nitrogen-Containing Ligands. Acta Physico-Chimica Sinica, 2023, 39(1): 2206035-0. doi: 10.3866/PKU.WHXB202206035
LI Dong-Ping , WANG Qian , XIE Yi-Bu , ZHANG Jun , LIAN Qing-Yun , LI Yong-Xiu . Mononuclear Dy(Ⅲ) and Ho(Ⅲ) Complexes with Slow Magnetic Relaxation Behavior. Chinese Journal of Inorganic Chemistry, 2018, 34(8): 1547-1554. doi: 10.11862/CJIC.2018.170
YI Wen-Hai , HU Jun-Jie , ZHANG Jia-Li , WEN He-Rui , LIU Sui-Jun , LI Yun-Wu . Dy(Ⅲ) and Zn/Ni-Dy(Ⅲ) Complexes Derived from Polyamine Phenol Ligand with Slow Magnetic Relaxation and Luminescent Properties. Chinese Journal of Inorganic Chemistry, 2020, 36(4): 607-619. doi: 10.11862/CJIC.2020.085
Qian Zou , Jing-Cui Liu , Xin-Da Huang , Song-Song Bao , Li-Min Zheng . Thermo-induced structural transformation with synergistic optical and magnetic changes in ytterbium and erbium complexes. Chinese Chemical Letters, 2021, 32(4): 1519-1522. doi: 10.1016/j.cclet.2020.10.019
Wen-Min WANG , Na QIAO , Shan-Shan DONG , Ying CHEN , Xiao-Yan XIN , Guo-Li YANG , Ming FANG . Crystal structure, slow magnetic relaxation behavior and conversion CO2 of a tetranuclear Ho(Ⅲ)-based complex. Chinese Journal of Inorganic Chemistry, 2023, 39(5): 917-927. doi: 10.11862/CJIC.2023.053
Shuang LIU , Ming-Fei HU , Lei-Lei LI , Wen-Zhen WANG . Structures, Photoluminescent and Magnetic Properties of Three 2D Lanthanide Complexes. Chinese Journal of Inorganic Chemistry, 2022, 38(4): 716-724. doi: 10.11862/CJIC.2022.067
Qian Zhang , Jixiang Hu , Qi Li , Dongxue Feng , Zhenni Gao , Guoming Wang . Single molecule magnetic behavior and photo-enhanced proton conductivity in a series of photochromic complexes. Chinese Chemical Letters, 2022, 33(3): 1417-1421. doi: 10.1016/j.cclet.2021.08.029
Chelsea N. Widener , Alexandria N. Bone , Mykhaylo Ozerov , Rachael Richardson , LU Zheng-Guang , Komalavalli Thirunavukkuarasu , Dmitry Smirnov , CHEN Xue-Tai , XUE Zi-Ling . Direct Observation of Magnetic Transitions in a Nickel(Ⅱ) Complex with Large Anisotropy. Chinese Journal of Inorganic Chemistry, 2020, 36(6): 1149-1156. doi: 10.11862/CJIC.2020.126
Chelsea N. Widener , Alexandria N. Bone , Mykhaylo Ozerov , Rachael Richardson , LU Zheng-Guang , Komalavalli Thirunavukkuarasu , Dmitry Smirnov , CHEN Xue-Tai , XUE Zi-Ling . Correction to "Direct Observation of Magnetic Transitions in a Nickel(Ⅱ) Complex with Large Anisotropy". Chinese Journal of Inorganic Chemistry, 2021, 37(1): 189-189. doi: 10.11862/CJIC.2021.040
LI Wen-Jiao , WANG Ya-Li , WANG Hai-Li , MA Yue , GUO Zhi-Lin , YU Jun-Jie , LI Li-Cun , WANG Qing-Lun , LIAO Dai-Zheng , CHENG Peng . Syntheses, Crystal Structures and Magnetic Properties of Two Nitrophenyl Substituted Nitronyl Nitroxide Radical-lanthanide Complexes. Chinese Journal of Structural Chemistry, 2016, 35(11): 1787-1796. doi: 10.14102/j.cnki.0254-5861.2011-1071
MEI Xue-Lan , DU Min-Jie , HU Peng , LI Zong-Qun . Syntheses, Structures and Magnetic Properties of Two Binuclear Lanthanide Complexes Bridged by Nitronyl Nitroxide Radical Ligands. Chinese Journal of Inorganic Chemistry, 2019, 35(2): 323-328. doi: 10.11862/CJIC.2019.034
Xue-lan MEI , Jian-ni GUO , Min-jie DU , Pei-pei YANG , Qian LI , Zong-qun LI , An-rong JU . Three Binuclear Lanthanide Complexes Constructed from Nitronyl Nitroxide Radical Ligands Containing Phenol Groups: Structure and Magnetic Properties. Chinese Journal of Inorganic Chemistry, 2021, 37(4): 592-600. doi: 10.11862/CJIC.2021.073
Ya-Hui GUAN , Liang ZHAO , Nian-Tao YAO , Oshio Hiroki , Tao LIU . Two cyano-bridged {FeⅢ2NiⅡ} single-chain magnets with huge magnetic hysteresis. Chinese Journal of Inorganic Chemistry, 2023, 39(9): 1775-1781. doi: 10.11862/CJIC.2023.136
WU Jia-Qi , MENG Yin-Shan , ZHU Hai-Lang , JIAO Cheng-Qi , LIU Tao . Synthesis and Magnetism of Cyano-bridged Fe2Ni2 Single-Molecule Magnets. Chinese Journal of Inorganic Chemistry, 2020, 36(12): 2331-2339. doi: 10.11862/CJIC.2020.252
Wen-Jie JI , Cheng-Cai XIA , Xin-Yu ZHANG , Xin-Yi WANG . Anionic Modification of the Cu-Tb Single-Molecule Magnets Based on the Compartmental Schiff-Base Ligand. Chinese Journal of Inorganic Chemistry, 2022, 38(6): 1199-1208. doi: 10.11862/CJIC.2022.117
Shurong Li , Zhenzhang Weng , Linpeng Jiang , Rongjia Wei , Haifeng Su , Lasheng Long , Lansun Zheng , Xiangjian Kong . A series of heterometallic 3d-4f polyoxometalates as single-molecule magnets. Chinese Chemical Letters, 2023, 34(3): 107251-1-107251-4. doi: 10.1016/j.cclet.2022.02.056
Yan Wu YANG , Ang JI , Bing Lin HE , Xin YAN , Xiao Long XU , De Hun WANG , Bao Gong QIAN . AN IMPROVED MODEL FOR COMPUTING SOLUTION DYNAMICS OF NATURAL PRODUCTS WITH 13C NUCLEAR MAGNETIC RELAXATION. Chinese Chemical Letters, 1993, 4(10): 903-906.