V-substituted pyrochlore-type polyantimonic acid for highly enhanced lithium-ion storage
-
* Corresponding authors.
E-mail addresses: wukaipeng@scu.edu.cn (K. Wu), hao.wu@scu.edu.cn (H. Wu).
Citation:
Haoyu Fang, Kai Yong, Boya Wang, Kaipeng Wu, Yun Zhang, Hao Wu. V-substituted pyrochlore-type polyantimonic acid for highly enhanced lithium-ion storage[J]. Chinese Chemical Letters,
;2023, 34(5): 107545.
doi:
10.1016/j.cclet.2022.05.059
N. Nitta, F.X. Wu, J.T. Lee, G. Yushin, Mater. Today 18 (2015) 252-264.
doi: 10.1016/j.mattod.2014.10.040
G. Harper, R. Sommerville, E. Kendrick, et al., Nature 575 (2019) 75-86.
doi: 10.1038/s41586-019-1682-5
M. Winter, B. Barnett, K. Xu, Chem. Rev. 118 (2018) 11433-11456.
doi: 10.1021/acs.chemrev.8b00422
M. Li, J. Lu, Z.W. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561.
doi: 10.1002/adma.201800561
Z.M. Liu, T. Song, U. Paik, J. Mater. Chem. A 6 (2018) 8159-8193.
doi: 10.1039/c8ta01782d
J. He, Y.Q. Wei, T.Y. Zhai, H.Q. Li, Mat. Chem. Front. 2 (2018) 437-455.
doi: 10.1039/c7qm00480j
L.Y. Kovalenko, V.A. Burmistrov, A.A. Biryukova, Russ. J. Electrochem. 52 (2016) 694-698.
doi: 10.1134/S1023193516070107
L.H. Baetsle, D. Huys, J. Inorg. Nucl. Chem. 30 (1968) 639-649.
doi: 10.1016/0022-1902(68)80489-0
T.N. Yu, H.B. Zhang, H.Z. Cao, G.Q. Zheng, Chem. Eng. J. 360 (2019) 313-324.
doi: 10.1016/j.cej.2018.11.209
F. Girardi, E. Sabbioni, J. Radioanal. Chem. 1 (1968) 169-178.
doi: 10.1007/BF02530237
Y.M. Tan, L.J. Chen, H. Chen, Q.L. Hou, X.H. Chen., Mater. Lett. 212 (2018) 103-106.
doi: 10.1016/j.matlet.2017.10.080
X.Z. Zhou, Z.F. Zhang, X.H. Xu, et al., ACS Appl. Mater. Interfaces 8 (2016) 35398-35406.
doi: 10.1021/acsami.6b13548
C.Z. Ke, F. Liu, Z.M. Zheng, et al., Rare Met. 40 (2021) 1347-1356.
doi: 10.1007/s12598-021-01716-1
X.Y. Feng, H.H. Wu, B. Gao, et al., Nano Res. 15 (2022) 352-360.
doi: 10.1007/s12274-021-3482-0
M. Cai, H. Zhang, Y. Zhang, et al., Sci. Bull. 67 (2022) 933-945.
doi: 10.1016/j.scib.2022.02.007
F. Ni, Y. Ma, J. Chen, W. Luo, J. Yang, Chin. Chem. Lett. 32 (2021) 2073-2078.
doi: 10.1016/j.cclet.2021.03.042
B.Y. Wang, Z.W. Deng, Y.T. Xia, et al., Adv. Energy Mater. 10 (2020) 1903119.
doi: 10.1002/aenm.201903119
B.Y. Wang, Y.H. Wei, H.Y. Fang, et al., Adv. Sci. 8 (2021) 2002866.
doi: 10.1002/advs.202002866
H.D. Zhou, C.R. Wiebe, J.A. Janik, et al., J. Solid State Chem. 183 (2010) 890-894.
doi: 10.1016/j.jssc.2010.01.025
K. Ozawa, M. Hase, H. Fujii, et al., Electrochim. Acta 50 (2005) 3205-3209.
doi: 10.1016/j.electacta.2004.11.051
Y.Q. Jia, J. Solid State Chem. 95 (1991) 184-187.
doi: 10.1016/0022-4596(91)90388-X
J. Morales, L. Sanchez, F. Martin, F. Berry, J. Solid State Chem. 179 (2006) 2554-2561.
doi: 10.1016/j.jssc.2006.05.003
Y.T. Hao, Y. Jiang, L.Z. Zhao, et al., ACS Appl. Mater. Interfaces 13 (2021) 21127-21137.
doi: 10.1021/acsami.0c21676
N.N. Wang, Z.C. Bai, Y.T. Qian, J. Yang, Adv. Mater. 28 (2016) 4126-4133.
doi: 10.1002/adma.201505918
X.M. Kang, G.D. Fu, X.W. Wang, et al., Chin. Chem. Lett. 32 (2021) 938-942.
doi: 10.1016/j.cclet.2020.06.013
W.A. England, M.G. Cross, A. Hamnett, P.J. Wiseman, J.B. Goodenough, Solid State Ion. 1 (1980) 231-249.
doi: 10.1016/0167-2738(80)90007-7
R.C. T. Slade, G.P. Hall, A. Ramanan, E. Prince, Solid State Ion. 92 (1996) 171-181.
doi: 10.1016/S0167-2738(96)00497-3
Z.J. Zhang, H.L. Zhao, Y.Q. Teng, et al., Adv. Energy Mater. 8 (2018) 1700174.
doi: 10.1002/aenm.201700174
Y.T. Yan, X.L. Zhao, H.L. Dou, et al., Chin. Chem. Lett. 32 (2021) 910-913.
doi: 10.1016/j.cclet.2020.07.021
C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Adv. Funct. Mater. 32 (2022) 2107249.
doi: 10.1002/adfm.202107249
Q.K. Zhang, X.Q. Zhang, H. Yuan, J.Q. Huang, Small Sci. 1 (2021) 2100058.
doi: 10.1002/smsc.202100058
C. Chen, Q. Liang, Z. Chen, et al., Angew. Chem. Int. Ed. 133 (2021) 26922-26928.
doi: 10.1002/ange.202110441
D. Larcher, A.S. Prakash, L. Laffont, et al., J. Electrochem. Soc. 153 (2006) A1778-A1787.
doi: 10.1149/1.2219711
C.R. Hao, T.G. Gao, A.B. Yuan, J.Q. Xu, Chin. Chem. Lett. 32 (2021) 113-118.
doi: 10.1016/j.cclet.2020.11.038
G. Zhu, R. Guo, W. Luo, et al., Natl. Sci. Rev. 8 (2021) nwaa152.
doi: 10.1093/nsr/nwaa152
F.Z. Zhang, Y.Y. Ma, M.M. Jiang, W. Luo, J.P. Yang, Rare Met. 41 (2022) 1276-1283.
doi: 10.1007/s12598-021-01741-0
P. Jing, Q. Wang, B.Y. Wang, et al., Ceram. Int. 45 (2019) 216-224.
doi: 10.1016/j.ceramint.2018.09.154
C.P. Wang, J.T. Yan, T.Y. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 25013-25019.
doi: 10.1002/anie.202110177
Y. Liu, H.C. Wang, K.K. Yang, et al., Appl. Sci. 9 (2019) 2677.
doi: 10.3390/app9132677
O.A. Jaramillo-Quintero, M. Benitez-Cruz, J.L. Garcia-Ocampo, A. Cano, M.E. Rincon, J. Alloy. Compd. 807 (2019) 151647.
doi: 10.1016/j.jallcom.2019.151647
M.X. Deng, S.J. Li, W.W. Hong, et al., Mater. Chem. Phys. 223 (2019) 46-52.
doi: 10.1016/j.matchemphys.2018.10.043
Q.G. Han, Y.B. Sun, W.Q. Zhang, et al., Ionics 26 (2020) 1221-1228.
doi: 10.1007/s11581-019-03300-1
Y. Li, Z.J. Song, T.T. Sun, et al., Int. J. Hydrog. Energy 46 (2021) 26308-26317.
doi: 10.1016/j.ijhydene.2021.05.110
C. Xian, W. Liang, M. Feng, et al., Nanoscale Adv. (UK)2 (2020) 5578-5583.
doi: 10.1039/D0NA00711K
J.L. Liu, J. Wang, C.H. Xu, et al., Adv. Sci. 5 (2018) 1700322.
doi: 10.1002/advs.201700322
N.T. Wu, J.K. Shen, L. Sun, et al., Electrochim. Acta 310 (2019) 70-77.
doi: 10.1016/j.electacta.2019.04.115
N.T. Wu, W.D. Tian, J.K. Shen, et al., Inorg. Chem. Front. 6 (2019) 192-198.
doi: 10.1039/c8qi01165f
S.B. Tang, M.O. Lai, L. Lu, Mater. Chem. Phys. 111 (2008) 149-153.
doi: 10.1016/j.matchemphys.2008.03.041
Q. Liu, X. Su, D. Lei, et al., Nat. Energy 3 (2018) 936-943.
doi: 10.1038/s41560-018-0180-6
J. Xie, N. Imanishi, T. Matsumura, et al., Solid State Ion. 179 (2008) 362-370.
doi: 10.1016/j.ssi.2008.02.051
B.Y. Wang, Y. Wang, H. Wu, et al., ChemElectroChem 4 (2017) 1141-1147.
doi: 10.1002/celc.201600854
K. Tang, X.Q. Yu, J.P. Sun, H. Li, X.J. Huang, Electrochim. Acta 56 (2011) 4869-4875.
doi: 10.1016/j.electacta.2011.02.119
Shao Hua Luo , Zi Long Tang , Jun Biao Lu , Zhong Tai Zhang . A novel synthetic route for LiFePO4/C cathode materials by addition of starch for lithium-ion batteries. Chinese Chemical Letters, 2007, 18(2): 237-240. doi: 10.1016/j.cclet.2006.12.041
Weijie Cheng , Qi Feng , Zhanglin Guo , Guanjun Chen , Yong Wang , Lixiong Yin , Jiayin Li , Xingang Kong . Electrochemical reaction mechanism of porous Zn2Ti3O8 as a high-performance pseudocapacitive anode for Li-ion batteries. Chinese Chemical Letters, 2022, 33(11): 4776-4780. doi: 10.1016/j.cclet.2022.01.002
Zhang Zhijia , Hou Yuxuan , Zhang Shaofei , Zhang Guoliang , Li Ming , Lu Huanming , Li Yong , Zheng Xuerong , Qiao Zhijun , Yu Zhenyang , Huang Qin , Kang Jianli . Facile synthesized Cu-SnO2 anode materials with three-dimensional metal cluster conducting architecture for high performance lithium-ion batteries. Chinese Chemical Letters, 2018, 29(11): 1656-1660. doi: 10.1016/j.cclet.2018.06.017
Ying Na , Xiaohong Sun , Anran Fan , Shu Cai , Chunming Zheng . Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chinese Chemical Letters, 2021, 32(3): 973-982. doi: 10.1016/j.cclet.2020.09.007
Guotao Xiang , Jiangmei Yin , Xixi Zhang , Peiyu Hou , Xijin Xu . Booting the electrochemical properties of Fe-based anode by the formation multiphasic nanocomposite for lithium-ion batteries. Chinese Chemical Letters, 2021, 32(7): 2169-2173. doi: 10.1016/j.cclet.2020.12.018
Qinyuan Huang , Jinbo Hu , Mei Zhang , Mengxiao Li , Ting Li , Guangming Yuan , Yuan Liu , Xiang Zhang , Xiaowei Cheng . Li-ion charge storage performance of wood-derived carbon fibers@MnO as a battery anode. Chinese Chemical Letters, 2022, 33(2): 1091-1094. doi: 10.1016/j.cclet.2021.06.088
Qi An , Xiaohong Sun , Ying Na , Shu Cai , Chunming Zheng . Graphene-supported cobalt nanoparticles used to activate SiO2-based anode for lithium-ion batteries. Chinese Chemical Letters, 2023, 34(3): 107305-1-107305-7. doi: 10.1016/j.cclet.2022.03.028
Dongmin Li , Bao Zhang , Xing Ou , Jiafeng Zhang , Kui Meng , Guanjun Ji , Pengfei Li , Jianhui Xu . Ammonia leaching mechanism and kinetics of LiCoO2 material from spent lithium-ion batteries. Chinese Chemical Letters, 2021, 32(7): 2333-2337. doi: 10.1016/j.cclet.2020.11.074
Deng Bingbing , Shen Lian , Liu Yangai , Yang Tao , Zhang Manshu , Liu Renjie , Huang Zhaohui , Fang Minghao , Wu Xiaowen . Porous Si/C composite as anode materials for high-performance rechargeable lithium-ion battery. Chinese Chemical Letters, 2017, 28(12): 2281-2284. doi: 10.1016/j.cclet.2017.11.032
Yang Haoying , Cui Wenhong , Han Yuzhen , Wang Bo . Porous nanocomposite derived from Zn, Ni-bimetallic metal-organic framework as an anode material for lithium-ion batteries. Chinese Chemical Letters, 2018, 29(6): 842-844. doi: 10.1016/j.cclet.2017.09.024
Wei Chuanliang , Fei Huifang , Tian Yuan , An Yongling , Tao Yuan , Li Yuan , Feng Jinkui . Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries. Chinese Chemical Letters, 2020, 31(4): 980-983. doi: 10.1016/j.cclet.2019.12.033
Nkongolo Tshamala Aristote , Kangyu Zou , Andi Di , Wentao Deng , Baowei Wang , Xinglan Deng , Hongshuai Hou , Guoqiang Zou , Xiaobo Ji . Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2022, 33(2): 730-742. doi: 10.1016/j.cclet.2021.08.049
Peng Jun , Zuo Yong-Tao , Li Gang , Wang Gang . Preparation of few-layer reduced graphene oxide-wrapped mesoporous Li4Ti5O12 spheres and its application as an anode material for lithium-ion batteries. Chinese Chemical Letters, 2016, 27(9): 1559-1562. doi: 10.1016/j.cclet.2016.02.028
Baozhu Wu , Shuo Qi , Xikai Wu , Haoli Wang , Qiangqiang Zhuang , Huimin Yi , Pu Xu , Zhennan Xiong , Gejun Shi , Shuangqiang Chen , Baofeng Wang . FeBO3 as a low cost and high-performance anode material for sodium-ion batteries. Chinese Chemical Letters, 2021, 32(10): 3113-3117. doi: 10.1016/j.cclet.2021.03.014
Sun Li , Wang Kai , Li Ningning , Zhang Jun , Guo Xiangxin , Liu Xianghong . Multilayered structure of N-carbonenvelopediron oxide/graphene nanocomposites as an improved anode for Li-ion battery. Chinese Chemical Letters, 2020, 31(9): 2333-2338. doi: 10.1016/j.cclet.2020.02.006
Yu Tian , Yuling Zhao , Fanqi Meng , Kaicheng Zhang , Yanyuan Qi , Yujie Zeng , Congcong Cai , Yuli Xiong , Zelang Jian , Yang Sun , Lin Gu , Wen Chen . Boosting Li-ion storage in Li2MnO3 by unequal-valent Ti4+-substitution and interlayer Li vacancies building. Chinese Chemical Letters, 2023, 34(4): 107494-1-107494-6. doi: 10.1016/j.cclet.2022.05.008
Kong Xingang , Zhang Jiarui , Huang Jianfeng , Li Jiayin , Qin Yi , Zhao Ting , Feng Qi . Microwave assisted hydrothermal synthesis of tin niobates nanosheets with high cycle stability as lithium-ion battery anodes. Chinese Chemical Letters, 2019, 30(3): 771-774. doi: 10.1016/j.cclet.2018.10.006
Miaomiao Su , Yifu Chen , Suqing Wang , Haihui Wang . Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries. Chinese Chemical Letters, 2023, 34(5): 107553-1-107553-4. doi: 10.1016/j.cclet.2022.05.067
Yang Chenglong , Zhong Xiongwu , Jiang Yu , Yu Yan . Reduced graphene oxide wrapped hollow molybdenum trioxide nanorod for high performance lithium-ion batteries. Chinese Chemical Letters, 2017, 28(12): 2231-2234. doi: 10.1016/j.cclet.2017.11.027
Zhang Li , Ding Yun , Song Jiangxuan . Crosslinked carboxymethyl cellulose-sodium borate hybrid binder for advanced silicon anodes in lithium-ion batteries. Chinese Chemical Letters, 2018, 29(12): 1773-1776. doi: 10.1016/j.cclet.2018.03.008