An in-depth mechanistic insight into the redox reaction and degradation of aqueous Zn-MnO2 batteries
-
* Corresponding author.
E-mail address: wangjiangan@nwpu.edu.cn (J.-G. Wang).
Citation:
Zongyuan You, Wei Hua, Na Li, Huanyan Liu, Jian-Gan Wang. An in-depth mechanistic insight into the redox reaction and degradation of aqueous Zn-MnO2 batteries[J]. Chinese Chemical Letters,
;2023, 34(4): 107525.
doi:
10.1016/j.cclet.2022.05.039
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928–935.
doi: 10.1126/science.1212741
Z. Yang, J. Zhang, M. Kintner-Meyer, et al., Chem. Rev. 111 (2011) 3577–3613.
doi: 10.1021/cr100290v
S. Chu, Y. Cui, N. Liu, Nat. Mater. 16 (2016) 16–22.
J. Ming, J. Guo, C. Xia, et al., Mater. Sci. Eng. R 135 (2019) 58–84.
doi: 10.1016/j.mser.2018.10.002
H. Liu, J.G. Wang, Z. You, et al., Mater. Today 42 (2021) 73–98.
doi: 10.1016/j.mattod.2020.08.021
L.E. Blanc, D. Kundu, L.F. Nazar, Joule 4 (2020) 771–799.
doi: 10.1016/j.joule.2020.03.002
M. Song, H. Tan, D. Chao, et al., Adv. Funct. Mater. 28 (2018) 1802564.
doi: 10.1002/adfm.201802564
A. Konarov, N. Voronina, J.H. Jo, et al., ACS Energy Lett. 3 (2018) 2620–2640.
doi: 10.1021/acsenergylett.8b01552
B. Tang, L. Shan, S. Liang, et al., Energy Environ. Sci. 12 (2019) 3288–3304.
doi: 10.1039/C9EE02526J
X. Jia, C. Liu, Z.G. Neale, et al., Chem. Rev. 120 (2020) 7795–7866.
doi: 10.1021/acs.chemrev.9b00628
K.W. Nam, H. Kim, J.H. Choic, et al., Energy Environ. Sci. 12 (2019) 1999–2009.
doi: 10.1039/C9EE00718K
L. Su, L. Liu, Y. Wang, et al., Chin. Chem. Lett. 31 (2020) 2358–2364.
doi: 10.1016/j.cclet.2020.03.014
C. Xu, B. Li, H. Du, et al., Angew. Chem. Int. Ed. 51 (2012) 933–935.
doi: 10.1002/anie.201106307
M.H. Alfaruqi, V. Mathew, J. Gim, et al., Chem. Mater. 27 (2015) 3609–3620.
doi: 10.1021/cm504717p
Z. Hou, M. Dong, Y. Xiong, et al., Small (2020) 2001228.
doi: 10.1002/smll.202001228
H. Pan, Y. Shao, P. Yan, et al., Nat. Energy 1 (2016) 16039.
doi: 10.1038/nenergy.2016.39
W. Sun, F. Wang, S. Hou, et al., J. Am. Chem. Soc. 139 (2017) 9775–9778.
doi: 10.1021/jacs.7b04471
J. Wang, J.G. Wang, H. Liu, et al., Adv. Funct. Mater. 31 (2020) 2007397.
X.Z. Zhai, J. Qu, J. Wang, et al., Energy Storage Mater. 42 (2021) 753–763.
doi: 10.1016/j.ensm.2021.08.021
X. Guo, J. Zhou, C. Bai, et al., Mater. Today Energy 16 (2020) 100396.
doi: 10.1016/j.mtener.2020.100396
B. Lee, H.R. Seo, H.R. Lee, et al., ChemSusChem 9 (2016) 2948–2956.
doi: 10.1002/cssc.201600702
J. Yang, J. Cao, Y. Peng, et al., ChemSusChem 13 (2020) 4103.
doi: 10.1002/cssc.202001216
N. Zhang, F. Cheng, J. Liu, et al., Nat. Commun. 8 (2017) 405–415.
doi: 10.1038/s41467-017-00467-x
S. Lian, C. Sun, W. Xu, et al., Nano Energy 62 (2019) 79–84.
doi: 10.1016/j.nanoen.2019.04.038
D. Wang, L. Wang, G. Liang, et al., ACS Nano 13 (2019) 10643–10652.
doi: 10.1021/acsnano.9b04916
G. Fang, C. Zhu, M. Chen, et al., Adv. Funct. Mater. 29 (2019) 1808375.
doi: 10.1002/adfm.201808375
J. Huang, Z. Wang, M. Hou, et al., Nat. Commun. 9 (2018) 2906.
doi: 10.1038/s41467-018-04949-4
J. Wang, J.G. Wang, X. Qin, et al., ACS Appl. Mater. Interfaces 12 (2020) 34949–34958.
doi: 10.1021/acsami.0c08812
T. Zhang, Y. Tang, G. Fang, et al., Adv. Funct. Mater. (2020) 2002711.
doi: 10.1002/adfm.202002711
S. Zhao, B. Han, D. Zhang, et al., J. Mater. Chem. A 6 (2018) 5733–5739.
doi: 10.1039/C8TA01031E
B. Lee, H.R. Lee, H. Kim, et al., Chem. Commun. 51 (2015) 9265–9268.
doi: 10.1039/C5CC02585K
J. Wang, J.G. Wang, H. Liu, et al., J. Mater. Chem. A 7 (2019) 13727–13735.
doi: 10.1039/C9TA03541A
X. Zhu, Z. Cao, W. Wang, et al., ACS Nano 15 (2021) 2971–2983.
doi: 10.1021/acsnano.0c09205
X.Z. Zhai, J. Qu, S.M. Hao, et al., Nano Micro Lett. 12 (2020) 56.
doi: 10.1007/s40820-020-0397-3
T. Sun, Q. Nian, S. Zheng, et al., Small 16 (2020) 2000597.
doi: 10.1002/smll.202000597
M.H. Alfaruqi, J. Gim, S. Kim, et al., J. Power Sources 288 (2015) 320–327.
doi: 10.1016/j.jpowsour.2015.04.140
Y. Zeng, X. Zhang, Y. Meng, et al., Adv. Mater. 29 (2017) 1700274.
doi: 10.1002/adma.201700274
M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 16 (2004) 3184–3190.
doi: 10.1021/cm049649j
Y. Hou, Y. Cheng, T. Hobson, et al., Nano Lett. 10 (2010) 2727–2733.
doi: 10.1021/nl101723g
G. Fang, J. Zhou, A. Pan, et al., ACS Energy Lett. 3 (2018) 2480–2501.
doi: 10.1021/acsenergylett.8b01426
Y. Huang, J. Mou, W. Liu, et al., Nano Micro Lett. 11 (2019) 49–56.
doi: 10.1007/s40820-019-0278-9
Y. Zhong, X. Xu, J. Veder, et al., iScience 23 (2020) 100943.
doi: 10.1016/j.isci.2020.100943
S.H. Kim, S.M. Oh, J. Power Sources 72 (1998) 150–158.
doi: 10.1016/S0378-7753(97)02703-1
Q. Chen, J. Jin, Z. Kou, et al., Small 16 (2020) 2000091.
doi: 10.1002/smll.202000091
F. Kataoka, T. Ishida, K. Nagita, et al., ACS Appl. Energy Mater. 3 (2020) 4720–4726.
doi: 10.1021/acsaem.0c00357
J. Huang, X. Tang, K. Liu, et al., Mater. Today Energy 17 (2020) 100475.
doi: 10.1016/j.mtener.2020.100475
X. Gao, H. Wu, W. Li, et al., Small 16 (2020) 1905842.
doi: 10.1002/smll.201905842
S.D. Han, S. Kim, D. Li, et al., Chem. Mater. 29 (2017) 4874–4884.
doi: 10.1021/acs.chemmater.7b00852
L. Ma, M.A. Schroeder, O. Borodin, et al., Nat. Energy 5 (2020) 743–749.
doi: 10.1038/s41560-020-0674-x
X. Han, H. Leng, Y. Qi, et al., Chem. Eng. J. 431 (2022) 133931.
doi: 10.1016/j.cej.2021.133931
J. Hao, B. Li, X. Li, et al., Adv. Mater. (2020) 2003021.
doi: 10.1002/adma.202003021
L. Wang, G. Fan, J. Liu, et al., Chin. Chem. Lett. 32 (2021) 1095–1110.
doi: 10.1016/j.cclet.2020.08.022
Wenfeng Shao , Chuanlin Li , Chenggang Wang , Guangsen Du , Shunshun Zhao , Guangmeng Qu , Yupeng Xing , Tianshuo Guo , Hongfei Li , Xijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Haibo Ye , Qianyu Li , Juan Li , Didi Li , Zhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Chengmin Hu , Pingxuan Liu , Ziyang Song , Yaokang Lv , Hui Duan , Li Xie , Ling Miao , Mingxian Liu , Lihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437