Layered photocatalytic nanomaterials for environmental applications
-
* Corresponding author.
E-mail address: hhw@cugb.edu.cn (H. Huang).
Citation:
Fang Chen, Yihe Zhang, Hongwei Huang. Layered photocatalytic nanomaterials for environmental applications[J]. Chinese Chemical Letters,
;2023, 34(3): 107523.
doi:
10.1016/j.cclet.2022.05.037
D. O'Connor, D.Y. Hou, Y.S. Ok, et al., J. Controlled Release 283 (2018) 200–213.
doi: 10.1016/j.jconrel.2018.06.007
S. Mukherjee, U. RoyChaudhuri, P.P. Kundu, J. Chem. Technol. Biotechnol. 93 (2018) 1300–1311.
doi: 10.1002/jctb.5489
Y. Yang, Y.S. Ok, K. Kim, E.E. Kwon, Y.F. Tsang, Sci. Total Environ. 596 (2017) 303–320.
Z. Shayegan, C. Lee, F. Haghighat, Chem. Eng. J. 334 (2018) 2408–2439.
doi: 10.1016/j.cej.2017.09.153
S.B. Wang, X. Han, Y.H. Zhang, et al., Small Struct. (2021) 2000061.
doi: 10.1002/sstr.202000061
W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sim, Environ. Sci. Pollut. Res. 27 (2020) 2522–2565.
doi: 10.1007/s11356-019-07193-5
S. Huang, T. Ouyang, B. Zheng, M. Dan, Z. Liu, Angew. Chem. Int. Ed. 60 (2021) 9546–9552.
doi: 10.1002/anie.202101058
S. Huang, B. Zheng, Z. Tang, et al., Chem. Eng. J. 422 (2021) 130086.
doi: 10.1016/j.cej.2021.130086
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
Q. Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang, Adv. Mater. 31 (2019) 1901997.
doi: 10.1002/adma.201901997
D.Q. Zhang, G.S. Li, H.X. Li, Y.F. Lu, Chem. Asian J. 8 (2013) 26–40.
doi: 10.1002/asia.201200123
W. Yang, H. Wang, R. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 409–414.
doi: 10.1002/anie.202011068
S. He, C. Yan, X. Chen, et al., Appl. Catal. B 276 (2020) 119138.
doi: 10.1016/j.apcatb.2020.119138
Y.B. Chen, J. Li, P. Liao, et al., Chin. Chem. Lett. 31 (2020) 1516–1519.
doi: 10.1016/j.cclet.2019.12.013
B.C. Zhu, B. Cheng, J.J. Fan, W. Ho, J.G. Yu, Small Struct. 2 (2021) 2100086.
doi: 10.1002/sstr.202100086
Y.L. Zhu, W. Zhou, Z.P. Shao, Small 13 (2017) 1603793.
doi: 10.1002/smll.201603793
G. Zhang, G. Liu, L.Z. Wang, J.T. Irvine, Chem. Soc. Rev. 45 (2016) 5951–5984.
doi: 10.1039/C5CS00769K
Y.C. Hu, L.H. Mao, X.J. Guan, et al., Renew. Sust. Energy Rev. 119 (2020) 109527.
doi: 10.1016/j.rser.2019.109527
H. Wang, Y.H. Liang, L. Liu, J.S. Hu, W.Q. Cui, Appl. Surf. Sci. 392 (2017) 51–60.
doi: 10.1016/j.apsusc.2016.08.068
S.G. Li, L.Q. Bai, N. Ji, et al., J. Mater. Chem. A 8 (2020) 9268–9277.
doi: 10.1039/D0TA02102D
H.J. Yu, H.W. Huang, A.H. Reshak, et al., Appl. Catal. B 284 (2021) 119709.
doi: 10.1016/j.apcatb.2020.119709
A. Kumar, A. Kumar, V. Krishnan, ACS Catal. 10 (2020) 10253-10315.
doi: 10.1021/acscatal.0c02947
Y.G. Ko, W.Y. Lee, Catal. Lett. 83 (2020) 157–160.
A.L. Sorkh-Kaman-Zadeh, A. Dashtbozorg, J. Mol. Liq. 223 (2016) 921–926.
doi: 10.1016/j.molliq.2016.09.016
Y. Tao, L. Wu, X.L. Zhao, et al., ACS Appl. Mater. Interfaces 11 (2019) 25967–25975.
doi: 10.1021/acsami.9b07216
K.D. Wang, H.S. Li, X.L. Chen, et al., Mater. Lett. 220 (2018) 54–57.
doi: 10.1016/j.matlet.2018.02.108
Y.C. Hu, L.H. Mao, X.J. Guan, et al., Renew. Sust. Energy Rev. 119 (2020) 109527.
doi: 10.1016/j.rser.2019.109527
K. Iizuka, T. Wato, Y. Miseki, K.J. Saito, A. Kudo, J. Am. Chem. Soc. 133 (2011) 20863–20868.
doi: 10.1021/ja207586e
Y.S. Ebina, N. Sakai, J. Phys. Chem. B 109 (2005) 17212–17216.
doi: 10.1021/jp051823j
A. Mukherji, C.H. Sun, S.C. Smith, G.Q. Lu, L.Z. Wang, J. Phys. Chem. C 115 (2011) 15674–15678.
doi: 10.1021/jp202783t
A. Mukherji, B. Seger, G.Q. Lu, L.Z. Wang, ACS Nano 5 (2011) 3483–3492.
doi: 10.1021/nn102469e
M.L. Guan, C. Xiao, J. Zhang, et al., J. Am. Chem. Soc. 135 (2013) 10411–10417.
doi: 10.1021/ja402956f
Y.Y. Wu, H.D. Ji, Q.M. Liu, et al., J. Hazard. Mater. 424 (2022) 127563.
doi: 10.1016/j.jhazmat.2021.127563
J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, J. Am. Chem. Soc. 134 (2012) 4473–4476.
doi: 10.1021/ja210484t
M.L. Pan, H.J. Zhang, G.D. Gao, L. Liu, W. Chen, Environ. Sci. Technol. 49 (2015) 6240–6248.
doi: 10.1021/acs.est.5b00626
Y.X. Guo, I. Siretanu, Y.H. Zhang, et al., J. Mater. Chem. A 6 (2018) 7500–7508.
doi: 10.1039/C8TA00781K
M. Shi, G.N. Li, J.M. Li, et al., Angew. Chem. Int. Ed. 132 (2020) 6652–6657.
doi: 10.1002/ange.201916510
D. Wu, B. Wang, W. Wang, et al., J. Mater. Chem. A 3 (2015) 15148–15155.
doi: 10.1039/C5TA02757H
M. Li, S.X. Yu, H.W. Huang, et al., Angew. Chem. Int. Ed. 58 (2019) 9517–9521.
doi: 10.1002/anie.201904921
J. Li, Y. Yu, L.Z. Zhang, Nanoscale 6 (2014) 8473–8488.
doi: 10.1039/C4NR02553A
J. Li, L.J. Cai, J. Shang, Y. Yu, L.Z. Zhang, Adv. Mater. 28 (2016) 4059–4064.
doi: 10.1002/adma.201600301
H. Wang, D.Y. Yong, S.C. Chen, et al., J. Am. Chem. Soc. 140 (2018) 1760–1766.
doi: 10.1021/jacs.7b10997
H.W. Huang, S.C. Tu, C. Zeng, et al., Angew. Chem. Int. Ed. 56 (2017) 11860–11864.
doi: 10.1002/anie.201706549
F. Chen, Z.Y. Ma, L.Q. Ye, et al., Adv. Mater. 32 (2020) 1908350.
doi: 10.1002/adma.201908350
Y. Zheng, F. Duan, M.Q. Chen, Y. Xie, J. Mol. Catal. A: Chem. 317 (2010) 34–40.
doi: 10.1016/j.molcata.2009.10.018
Z.Y. Zhao, Y. Zhou, F. Wang, et al., ACS Appl. Mater. Interfaces 7 (2015) 730–737.
doi: 10.1021/am507089x
Q.T. Zhang, S.S. Yuan, B. Xu, et al., Catal. Today 315 (2018) 184–193.
doi: 10.1016/j.cattod.2018.03.071
H. Fujito, H. Kunioku, D.C. Kato, H. Kageyama, R. Abe, J. Am. Chem. Soc. 138 (2016) 2082–2085.
doi: 10.1021/jacs.5b11191
Y. You, S.B. Wang, K. Xiao, et al., ACS Sustain. Chem. Eng. 6 (2018) 16219–16227.
doi: 10.1021/acssuschemeng.8b03075
K.T. Ogawa, A. Nakada, A. Saeki, H. Kageyama, R. Abe, ACS Appl. Mater. Interfaces 11 (2018) 5642–5650.
doi: 10.1021/acsami.8b06411
C. Hu, H.W. Huang, F. Chen, et al., Adv. Funct. Mater. 30 (2020) 1908168.
doi: 10.1002/adfm.201908168
X. Xiang, F. Li, Z.Q. Huang, Rev. Adv. Sci. Eng. 3 (2014) 158–171.
doi: 10.1166/rase.2014.1060
S.J. Xia, L.Y. Zhang, X.B. Zhou, G.X. Pan, Z.M. Ni, Appl. Clay Sci. 114 (2015) 577–585.
doi: 10.1016/j.clay.2015.06.023
J. Das, K. Parida, J. Mol. Catal. A: Chem. 264 (2007) 248–254.
doi: 10.1016/j.molcata.2006.09.033
G.H. Zhang, X.Q. Zhang, Y. Meng, et al., Chem. Eng. J. 392 (2020) 123684.
doi: 10.1016/j.cej.2019.123684
L. Mohapatra, K. Parida, J. Mater. Chem. A 4 (2016) 10744–10766.
doi: 10.1039/C6TA01668E
T. Subramanian, A. Dhakshinamoorthy, K.S. Pitchumani, Tetrahedron Lett. 54 (2013) 7167–7170.
doi: 10.1016/j.tetlet.2013.10.098
G.X. Chen, S.M. Qian, X.M. Tu, et al., Appl. Surf. Sci. 293 (2014) 345–351.
doi: 10.1016/j.apsusc.2013.12.165
B. Li, Y.F. Zhao, S.T. Zhang, W. Gao, M. Wei, ACS Appl. Mater. Interfaces 5 (2013) 10233–10239.
doi: 10.1021/am402995d
J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim, S. Hwang, J. Am. Chem. Soc. 133 (2011) 14998–15007.
doi: 10.1021/ja203388r
K. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 30 (2018) 1804779.
doi: 10.1002/adma.201804779
J.X. Nan, X. Guo, J. Xiao, et al., Small 17 (2021) 1902085.
doi: 10.1002/smll.201902085
Y.L. Sun, X. Meng, Y.H. Dall'gnese, et al., Nano-Micro Lett. 11 (2019) 79.
doi: 10.1007/s40820-019-0309-6
X.D. Sun, H.W. Huang, Q. Zhao, T.Y. Ma, L.Z. Wang, Adv. Funct. Mater. 30 (2020) 1910005.
doi: 10.1002/adfm.201910005
X.H. Wu, Z.Y. Wang, M.Z. Yu, L.Y. Xiu, J.S. Qiu, Adv. Mater. 29 (2017) 1607017.
doi: 10.1002/adma.201607017
T. Cai, L.L. Wang, Y.T. Liu, et al., Appl. Catal. B 239 (2018) 545–554.
doi: 10.1016/j.apcatb.2018.08.053
S.W. Cao, B.J. Shen, T. Tong, J.W. Fu, J.G. Yu, Adv. Funct. Mater. 28 (2018) 1800136.
doi: 10.1002/adfm.201800136
B. Balasubramaniam, N. Singh, P. Kar, et al., Mol. Syst. Des. Eng. 4 (2019) 804–827.
doi: 10.1039/C8ME00116B
R.T. Lv, J.A. Robinson, R.E. Schaak, et al., Acc. Chem. Res. 48 (2015) 56–64.
doi: 10.1021/ar5002846
H. Ramakrishna Matte, A. Gomathi, A.K. Manna, et al., Angew. Chem. Int. Ed. 49 (2010) 4059–4062.
doi: 10.1002/anie.201000009
X.M. Guo, J.Y. Ji, Q.G. Jiang, et al., ACS Appl. Mater. Interfaces 9 (2017) 30591–30598.
doi: 10.1021/acsami.7b06613
A.L. Jawaid, D. Nepal, K. Park, et al., Chem. Mater. 28 (2016) 337–348.
doi: 10.1021/acs.chemmater.5b04224
G. Koyyada, S.P. Vattikuti, J. Shim, V. Chitturi, J.H. Jung, Mater. Res. Bull. 109 (2019) 246–254.
doi: 10.1016/j.materresbull.2018.09.045
X. Zong, H.J. Yan, G.P. Wu, et al., J. Am. Chem. Soc. 130 (2008) 7176–7177.
doi: 10.1021/ja8007825
W. Peng, X. Wang, X. Li, Nanoscale 6 (2014) 8311–8317.
doi: 10.1039/c4nr01654h
S.P. Vattikuti, C. Byon, C.V. Reddy, R. Ravikumar, RSC Adv. 5 (2015) 86675-86684.
doi: 10.1039/C5RA15159G
S.E. Islam, D. Hang, C. Chen, K.H. Sharma, Chem. Eur. J. 24 (2018) 9305–9315.
doi: 10.1002/chem.201801397
W.C. Peng, Y. Li, F.B. Zhang, G.L. Zhang, X.B. Fan, Ind. Eng. Chem. Res. 56 (2017) 4611–4626.
doi: 10.1021/acs.iecr.7b00371
S.Y. Guo, H.H. Luo, Y. Li, et al., J. Alloys Compd. 852 (2021) 157026.
doi: 10.1016/j.jallcom.2020.157026
E.C. Franklin, J. Am. Chem. Soc. 44 (1922) 486–509.
doi: 10.1021/ja01424a007
X.C. Wang, S. Blechert, M. Antonietti, ACS Catal. 2 (2012) 1596–1606.
doi: 10.1021/cs300240x
X.C. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8 (2009) 76–80.
doi: 10.1038/nmat2317
X.L. Liu, R. Ma, L. Zhuang, et al., Crit. Rev. Environ. Sci. Technol. 51 (2021) 751–790.
doi: 10.1080/10643389.2020.1734433
Q. Hao, G.H. Jia, W. Wei, et al., Nano Res. 13 (2020) 18–37.
doi: 10.1007/s12274-019-2589-z
J.J. Zhu, P. Xiao, H.L. Li, S.A. Carabineiro, ACS Appl. Mater. Interfaces 6 (2014) 16449–16465.
doi: 10.1021/am502925j
J. Jiang, S.W. Cao, C.L. Hu, C.H. Chen, Chin. J. Catal. 38 (2017) 1981–1989.
doi: 10.1016/S1872-2067(17)62936-X
S.Z. Hu, F.Y. Li, Z.P. Fan, et al., Dalton Trans 44 (2015) 1084–1092.
doi: 10.1039/C4DT02658F
Z. Li, C. Kong, G.X. Lu, J. Phys. Chem. C 120 (2016) 56–63.
doi: 10.1021/acs.jpcc.5b09469
L. Muniandy, F. Adam, A.R. Mohamed, A. Iqbal, Appl. Surf. Sci. 398 (2017) 43–55.
doi: 10.1016/j.apsusc.2016.11.103
L. Zhou, H.Y. Zhang, H.Q. Sun, et al., Catal. Sci. Technol. 6 (2016) 7002–7023.
doi: 10.1039/C6CY01195K
T. Xiong, W.L. Cen, Y.X. Zhang, F. Dong, ACS Catal. 6 (2016) 2462–2472.
doi: 10.1021/acscatal.5b02922
Z. Huang, J.J. Song, L. Pan, et al., Nano Energy 12 (2015) 646–656.
doi: 10.1016/j.nanoen.2015.01.043
Y.X. Zeng, X. Liu, C.B. Liu, et al., Appl. Catal. B 224 (2018) 1–9.
doi: 10.1016/j.apcatb.2017.10.042
C. Hu, F. Chen, Y.G. Wang, et al., Adv. Mater. 33 (2021) 2101751.
doi: 10.1002/adma.202101751
C.Z. Wu, S.Y. Xue, Z.J. Qin, et al., Appl. Catal. B 282 (2021) 119557.
doi: 10.1016/j.apcatb.2020.119557
Y.F. Li, R.X. Jin, Y. Xing, et al., Adv. Energy Mater. 6 (2016) 1601273.
doi: 10.1002/aenm.201601273
N. Bao, X.D. Hu, Q.Z. Zhang, et al., Appl. Surf. Sci. 403 (2017) 682–690.
doi: 10.1016/j.apsusc.2017.01.256
L.J. Fang, Y.H. Li, P.F. Liu, et al., ACS Sustain. Chem. Eng. 5 (2017) 2039–2043.
doi: 10.1021/acssuschemeng.6b02721
F. Ding, D. Yang, Z.W. Tong, et al., Environ. Sci. Nano 4 (2017) 1455–1469.
doi: 10.1039/C7EN00255F
B.J. Sun, W. Zhou, H.Z. Li, et al., Adv. Mater. 30 (2018) 1804282.
doi: 10.1002/adma.201804282
J.X. Low, B.Z. Dai, T. Tong, C.J. Jiang, J.G. Yu, Adv. Mater. 31 (2019) 1802981.
doi: 10.1002/adma.201802981
L.K. Putri, B. Ng, W. Ong, et al., J. Mater. Chem. A 6 (2018) 3181–3194.
doi: 10.1039/C7TA09723A
N.S. Mishra, P. Saravanan, ChemistrySelect 3 (2018) 8023–8034.
doi: 10.1002/slct.201801524
Q.H. Weng, X.B. Wang, X. Wang, D. Golberg, Chem. Soc. Rev. 45 (2016) 3989–4012.
doi: 10.1039/C5CS00869G
W. Luo, Y.B. Wang, E. Hitz, et al., Adv. Funct. Mater. 27 (2017) 1701450.
doi: 10.1002/adfm.201701450
S.J. Yu, X.X. Wang, H.W. Pang, et al., Chem. Eng. J. 333 (2018) 343–360.
doi: 10.1016/j.cej.2017.09.163
Q.H. Weng, X.B. Wang, X. Wang, D. Golberg, Chem. Soc. Rev. 45 (2016) 3989–4012.
doi: 10.1039/C5CS00869G
S.G. Meng, X.J. Ye, X.F. Ning, et al., Appl. Catal. B 182 (2016) 356–368.
doi: 10.1016/j.apcatb.2015.09.030
J.Q. Li, N. Lei, H.J. Hao, J. Zhou, Chem. Phys. Lett. 672 (2017) 99–104.
doi: 10.1016/j.cplett.2017.01.054
R. Sevak Singh, R. Yingjie Tay, W. Leong Chow, et al., Appl. Phys. Lett. 104 (2014) 163101.
doi: 10.1063/1.4872318
C.J. Huang, C. Chen, M.W. Zhang, et al., Nat. Commun. 6 (2015) 7698.
doi: 10.1038/ncomms8698
D. Liu, M.W. Zhang, W.J. Xie, et al., Appl. Catal. B 207 (2017) 72–78.
doi: 10.1016/j.apcatb.2017.02.011
L.B. Jiang, X.Z. Yuan, G.M. Zeng, et al., Appl. Catal. B 221 (2018) 715–725.
doi: 10.1016/j.apcatb.2017.09.059
B.S. Li, C. Lai, G.M. Zeng, et al., Small 15 (2019) 1804565.
doi: 10.1002/smll.201804565
T. Sakthivel, X.Y. Huang, Y.C. Wu, S.M. Rtimi, Chem. Eng. J. 379 (2020) 122297.
doi: 10.1016/j.cej.2019.122297
A. Castellanos-Gomez, L. Vicarelli, E. Prada, et al., 2D Mater. 1 (2014) 025001.
doi: 10.1088/2053-1583/1/2/025001
H. Liu, A.T. Neal, Z. Zhu, et al., ACS Nano 8 (2014) 4033–4041.
doi: 10.1021/nn501226z
J. Hu, Z.K. Guo, P.E. Mcwilliams, et al., Nano Lett. 16 (2016) 74–79.
doi: 10.1021/acs.nanolett.5b02895
H. Wang, S.L. Jiang, W. Shao, et al., J. Am. Chem. Soc. 140 (2018) 3474–3480.
doi: 10.1021/jacs.8b00719
J.J. Wang, L. Tang, G.M. Zeng, et al., Appl. Catal. B 209 (2017) 285–294.
doi: 10.1016/j.apcatb.2017.03.019
M.S. Zhu, C.Y. Zhai, T. Majima, Appl. Catal. B 221 (2018) 645–651.
doi: 10.1016/j.apcatb.2017.09.063
J.R. Ran, W.W. Guo, H.L. Wang, et al., Adv. Mater. 30 (2018) 1800128.
doi: 10.1002/adma.201800128
H. Zhong, Z.Q. Wang, Z.F. Liu, et al., Int. Biodeterior. Biodegrad. 115 (2016) 141–145.
doi: 10.1016/j.ibiod.2016.08.008
Y. Liu, M. Cheng, Z.F. Liu, et al., Chemosphere 236 (2019) 124387.
doi: 10.1016/j.chemosphere.2019.124387
G. Centi, S. Perathoner, Microporous Mesoporous Mater. 107 (2008) 3–15.
doi: 10.1016/j.micromeso.2007.03.011
J.X. Low, S.W. Cao, J.G. Yu, S. Wageh, Chem. Commun. 50 (2014) 10768–10777.
doi: 10.1039/C4CC02553A
H.J. Li, Y. Zhou, W. Tu, J.H. Ye, Z.G. Zou, Adv. Funct. Mater. 25 (2015) 998–1013.
doi: 10.1002/adfm.201401636
S. Giannakis, S.M. Rtimi, C. Pulgarin, Molecules 22 (2017) 1070.
doi: 10.3390/molecules22071070
I.M. Bulai, J. Math. Chem. 54 (2016) 1387–1403.
doi: 10.1007/s10910-016-0603-1
Y.J. Yao, H. Chen, C. Lian, et al., J. Hazard. Mater. 314 (2016) 129–139.
doi: 10.1016/j.jhazmat.2016.03.089
W. Zhang, Z.T. Zeng, Z.F. Liu, et al., Ecotoxicol. Environ. Saf. 189 (2020) 109914.
doi: 10.1016/j.ecoenv.2019.109914
T. Paul, P.L. Miller, T.J. Strathmann, Environ. Sci. Technol. 41 (2007) 4720–4727.
doi: 10.1021/es070097q
X.X. Zeng, Y.Q. Wan, X.F. Gong, Z.D. Xu, RSC Adv. 7 (2017) 36269–36278.
doi: 10.1039/C7RA05213H
M.Z. Jacobson, Energy Environ. Sci. 2 (2009) 148–173.
doi: 10.1039/B809990C
I. Heo, M.K. Kim, S. Sung, et al., Environ. Sci. Technol. 47 (2013) 3657–3664.
doi: 10.1021/es304188k
J. Lasek, Y. Yu, J.C. Wu, J. Photochem. Photobiol. C 14 (2013) 29–52.
doi: 10.1016/j.jphotochemrev.2012.08.002
G.H. Dong, W. Ho, L.Z. Zhang, Appl. Catal. B 168 (2015) 490–496.
doi: 10.1016/j.apcatb.2015.01.014
Y. Bai, P. Yang, P.Q. Wang, et al., J. Taiwan Inst. Chem. Eng. 82 (2018) 273–280.
doi: 10.1016/j.jtice.2017.10.021
H.X. Wu, D.Y. Chen, N.J. Li, et al., Nanoscale 8 (2016) 12066–12072.
doi: 10.1039/C6NR02955H
S. Lingampalli, M.M. Ayyub, C. Rao, ACS Omega 2 (2017) 2740–2748.
doi: 10.1021/acsomega.7b00721
Z.Y. Zhao, H. An, J. Lin, et al., Chem. Rec. 19 (2019) 873–882.
doi: 10.1002/tcr.201800153
S.Q. Huang, T. Ouyang, J.Y. Chen, et al., J. Colloid Interface Sci. 605 (2022) 602–612.
doi: 10.1016/j.jcis.2021.07.091
Y.N. Liu, Z.F. Shen, J.L. Song, et al., Chin. Chem. Lett. 31 (2020) 2747–2751.
doi: 10.1016/j.cclet.2020.06.016
K. Kabra, R. Sawhney, J. Hazard. Mater. 149 (2007) 680–685.
doi: 10.1016/j.jhazmat.2007.04.028
Y.X. Ye, P. Yang, Y.W. Deng, et al., Chin. Chem. Lett. 33 (2022) 3127–3132.
doi: 10.1016/j.cclet.2021.10.009
D.D. Wang, Y.G. Xu, M. Xie, et al., J. Hazard. Mater. 384 (2020) 121480.
doi: 10.1016/j.jhazmat.2019.121480
A.L. Jin, X. Liu, M.R. Li, et al., ACS Sustain. Chem. Eng. 7 (2019) 5122– 5133.
doi: 10.1021/acssuschemeng.8b05969
H. Wu, C. Chang, D.L. Lu, K. Maeda, ACS Appl. Mater. Interfaces 11 (2019) 35702–35712.
doi: 10.1021/acsami.9b10555
H. Sereshti, M.V. Farahani, M. Baghdadi, Talanta 146 (2016) 662–669.
doi: 10.1016/j.talanta.2015.06.051
C.M. Li, G. Chen, J.X. Sun, et al., Appl. Catal. B 188 (2016) 39–47.
doi: 10.1016/j.apcatb.2016.01.054
J. Zhang, N. Gao, F.L. Chen, et al., Chem. Eng. J. 358 (2019) 398–407.
doi: 10.1016/j.cej.2018.10.083
B. Valizadeh, T.N. Nguyen, S. Kampouri, et al., J. Mater. Chem. A 8 (2020) 9629–9637.
doi: 10.1039/D0TA01046D
L.X. Jia, X. Tan, Y.F. Li, et al., Chin. Chem. Lett. 33 (2022) 3053–3060.
doi: 10.1016/j.cclet.2021.09.043
J. Shang, W.C. Hao, X.J. Lv, et al., ACS Catal. 4 (2014) 954–961.
doi: 10.1021/cs401025u
D.C. Schmelling, K.A. Gray, P.V. Kamat, Environ. Sci. Technol. 30 (1996) 2547–2555.
doi: 10.1021/es950896l
Y. Shao, W. Ye, C. Sun, C. Liu, Q. Wang, RSC Adv. 7 (2017) 39089-39095.
doi: 10.1039/C7RA07106J
A.Z. Huang, N. Wang, M. Lei, et al., Environ. Sci. Technol. 47 (2013) 518–525.
doi: 10.1021/es302935e
H.O. Tugaoen, S. Garcia-Segura, K. Hristovski, P. Westerhoff, Sci. Total Environ. 599 (2017) 1524–1551.
doi: 10.1016/j.scitotenv.2017.04.238
S.I. Seneviratne, J. Rogelj, R. Seferian, et al., Nature 558 (2018) 41–49.
doi: 10.1038/s41586-018-0181-4
J. Goldemberg, Science 315 (2007) 808–810.
doi: 10.1126/science.1137013
W.L. Abou Saoud, A.A. Assadi, M.N. Guiza, et al., Appl. Catal. B 213 (2017) 53–61.
doi: 10.1016/j.apcatb.2017.05.012
N. Kornienko, J.Z. Zhang, K.K. Sakimoto, P.D. Yang, E. Reisner, Nat. Nanotechnol. 13 (2018) 890–899.
doi: 10.1038/s41565-018-0251-7
J.F. Shi, Y.J. Jiang, Z.Y. Jiang, et al., Chem. Soc. Rev. 44 (2015) 5981–6000.
doi: 10.1039/C5CS00182J
N. Vu, S. Kaliaguine, T. Do, Adv. Funct. Mater. 29 (2019) 1901825.
doi: 10.1002/adfm.201901825
C. Zeng, H.W. Huang, T.R. Zhang, et al., ACS Appl. Mater. Interfaces 9 (2017) 27773–27783.
doi: 10.1021/acsami.7b08767
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
Jia-Ru Li , Ning Li , Li-Ling He , Jun He . Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole. Chinese Chemical Letters, 2025, 36(1): 109934-. doi: 10.1016/j.cclet.2024.109934
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Zhenfei Tang , Yunwu Zhang , Zhiyuan Yang , Haifeng Yuan , Tong Wu , Yue Li , Guixiang Zhang , Xingzhi Wang , Bin Chang , Dehui Sun , Hong Liu , Lili Zhao , Weijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107
Lei Zhou , Youjun Zhou , Lizhen Fang , Yiqiao Bai , Yujia Meng , Liang Li , Jie Yang , Yong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401