Fenton-reaction-triggered metabolism of acetaminophen for enhanced cancer therapy
-
* Corresponding author.
E-mail address: tcai@cpu.edu.cn (T. Cai).
1 The authors contributed equally to this work.
Citation:
Fanwen Sun, Yayun Peng, Yanping Li, Menghan Xu, Ting Cai. Fenton-reaction-triggered metabolism of acetaminophen for enhanced cancer therapy[J]. Chinese Chemical Letters,
;2023, 34(2): 107507.
doi:
10.1016/j.cclet.2022.05.021
R.T. Stravitz, W.M. Lee, The Lancet 394 (2019) 869–881.
doi: 10.1016/S0140-6736(19)31894-X
W. Bernal, J. Wendon, N. Engl. J. Med. 369 (2013) 2525–2534.
doi: 10.1056/NEJMra1208937
M.R. Mcgill, C.D. Williams, Y. Xie, et al., Toxicol. Appl. Pharmacol. 264 (2012) 387–394.
doi: 10.1016/j.taap.2012.08.015
M.R. Mcgill, H. Yan, A. Ramachandran, et al., Hepatology 53 (2011) 974–982.
doi: 10.1002/hep.24132
M.R. Mcgill, H. Jaeschke, Pharm. Res. 30 (2013) 2174–2187.
doi: 10.1007/s11095-013-1007-6
W. Bernal, A. Hyyrylainen, A. Gera, et al., J. Hepatol. 59 (2013) 74–80.
doi: 10.1016/j.jhep.2013.02.010
X. Wang, Q. Wu, A. Liu, et al., Drug Metab. Rev. 49 (2017) 395–437.
doi: 10.1080/03602532.2017.1354014
P. Zhang, S. Chen, H. Tang, et al., Toxicol. Appl. Pharmacol. 410 (2021) 115355.
doi: 10.1016/j.taap.2020.115355
Q. Wang, S. Wei, H. Zhou, et al., Cell Death Discov. 5 (2019) 119-119.
doi: 10.1038/s41420-019-0198-y
M.P. Murphy, Biochem. J. 417 (2008) 1–13.
S. Zhai, X. Hu, Y. Hu, et al., Biomaterials 121 (2017) 41–54.
doi: 10.1016/j.biomaterials.2017.01.002
D. Jia, X. Ma, Y. Lu, et al., Chin. Chem. Lett. 32 (2021) 162–167.
doi: 10.1016/j.cclet.2020.11.052
N.M. Vad, G. Yount, D. Moore, et al., J. Pharm. Sci. 98 (2009) 1409–1425.
doi: 10.1002/jps.21505
N.M. Vad, S.K. Kudugunti, D. Graber, et al., Int. J. Oncol. 35 (2009) 193–204.
X. Lian, Y. Huang, Y. Zhu, et al., Angew. Chem. Int. Ed. 57 (2018) 5725–5730.
doi: 10.1002/anie.201801378
A.K. Sahoo, M.P. Sk, S.S. Ghosh, A. Chattopadhyay, Nanoscale 3 (2011) 4226–4233.
doi: 10.1039/c1nr10389j
A.K. Sahoo, S. Sharma, A. Chattopadhyay, S.S. Ghosh, Nanoscale 4 (2012) 1688–1694.
doi: 10.1039/c2nr11837h
S. Das, A.K. Sahoo, S.S. Ghosh, A. Chattopadhyay, Langmuir 26 (2010) 15714–15717.
doi: 10.1021/la1034867
Y. Zhou, S. Fan, L. Feng, et al., Adv. Mater. 33 (2021) 2104223.
doi: 10.1002/adma.202104223
X. Wang, X. Zhong, Z. Liu, L. Cheng, Nano Today 35 (2020) 100946.
doi: 10.1016/j.nantod.2020.100946
T. Zhou, Y. Xu, L. Xing, et al., Adv. Mater. 33 (2021) 2100114.
doi: 10.1002/adma.202100114
D. Wang, H. Wu, G. Yang, et al., ACS Nano 14 (2020) 13500–13511.
doi: 10.1021/acsnano.0c05499
J. Chen, X. Wang, Y. Zhang, et al., Biomaterials 266 (2021) 120457.
doi: 10.1016/j.biomaterials.2020.120457
Z. Tang, Y. Liu, M. He, W. Bu, Angew. Chem. Int. Ed. 58 (2019) 946–956.
doi: 10.1002/anie.201805664
P. Ji, H. Huang, S. Yuan, et al., Adv. Healthc. Mater. 8 (2019) 1900911.
doi: 10.1002/adhm.201900911
M. Liu, B. Liu, Q. Liu, et al., Coord. Chem. Rev. 382 (2019) 160–180.
doi: 10.1016/j.ccr.2018.12.015
D. Wang, J. Zhou, R. Chen, et al., Chem. Mater. 29 (2017) 3477–3489.
doi: 10.1021/acs.chemmater.6b05215
Y. Liu, W. Zhen, L. Jin, et al., ACS Nano 12 (2018) 4886–4893.
doi: 10.1021/acsnano.8b01893
S. Sheng, F. Liu, L. Lin, et al., J. Control. Release 328 (2020) 631–639.
doi: 10.1016/j.jconrel.2020.09.029
R. Xu, J. Yang, Y. Qian, et al., Nanoscale Horiz. 6 (2021) 348–356.
doi: 10.1039/D0NH00674B
J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 44 (2011) 957–968.
doi: 10.1021/ar200028a
Z. Zhou, J. Song, R. Tian, et al., Angew. Chem. Int. Ed. 56 (2017) 6492–6496.
doi: 10.1002/anie.201701181
W. Wang, Y. Jin, Z. Xu, et al., WIREs Nanomed. Nanobiotechnol. 12 (2020) e1614.
M. Wu, Y. Yang, Adv. Mater. 29 (2017) 1606134.
doi: 10.1002/adma.201606134
Q. Xia, H. Wang, B. Huang, et al., Small 15 (2019) 1803088.
Y. Wang, J. Yan, N. Wen, et al., Biomaterials 230 (2020) 119619.
doi: 10.1016/j.biomaterials.2019.119619
Y. Sun, L. Zheng, Y. Yang, et al., Nano-Micro Lett. 12 (2020) 103.
doi: 10.1007/s40820-020-00423-3
P. Horcajada, T. Chalati, C. Serre, et al., Nat. Mater. 9 (2010) 172–178.
doi: 10.1038/nmat2608
Y. Gu, L. Miao, Y. Yin, et al., Chin. Chem. Lett. 32 (2021) 1491–1496.
doi: 10.1016/j.cclet.2020.09.029
B. Yang, J. Shi, J. Am. Chem. Soc. 142 (2020) 21775–21785.
doi: 10.1021/jacs.0c09984
X. Wan, L. Song, W. Pan, et al., ACS Nano 14 (2020) 11017–11028.
doi: 10.1021/acsnano.9b07789
X. Meng, D. Li, L. Chen, et al., ACS Nano 15 (2021) 5735–5751.
doi: 10.1021/acsnano.1c01248
X. Shan, S. Li, B. Sun, et al., J. Control. Release 319 (2020) 322–332.
doi: 10.1016/j.jconrel.2020.01.008
S. Zhan, H. Zhang, X. Mi, et al., Environ. Sci. Technol. 54 (2020) 8333–8343.
doi: 10.1021/acs.est.9b07245
N. Wang, W. Ma, Y. Du, et al., ACS Appl. Mater. Interfaces 11 (2019) 1174–1184.
doi: 10.1021/acsami.8b14987
P. Zhang, J. Guo, C. Wang, J. Mater. Chem. 22 (2012) 21426–21433.
doi: 10.1039/c2jm34725c
M.J. Yin, P. Cui, Z. Hu, et al., Adv. Mater. Res. 393-395 (2011) 1173–1176.
A.K. Sahoo, U. Goswami, D. Dutta, et al., ACS Biomater. Sci. Eng. 2 (2016) 1395–1402.
doi: 10.1021/acsbiomaterials.6b00334
C. Qiao, R. Zhang, Y. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 16982–16988.
doi: 10.1002/anie.202007474
E. Bellido, T. Hidalgo, M.V. Lozano, et al., Adv. Healthc. Mater. 4 (2015) 1246–1257.
doi: 10.1002/adhm.201400755
M. Socha, A. Lamprecht, F. El Ghazouani, et al., J. Nanosci. Nanotechno. 8 (2008) 2369–2376.
doi: 10.1166/jnn.2008.081
M. Socha, P. Bartecki, C. Passirani, et al., J. Drug Target. 17 (2009) 575–585.
doi: 10.1080/10611860903112909
H. Ranji-Burachaloo, F. Karimi, K. Xie, et al., ACS Appl. Mater. Interfaces 9 (2017) 33599–33608.
doi: 10.1021/acsami.7b07981
H. Ranji-Burachaloo, P.A. Gurr, D.E. Dunstan, G.G. Qiao, ACS Nano 12 (2018) 11819–11837.
doi: 10.1021/acsnano.8b07635
Z. Shen, J. Song, B.C. Yung, et al., Adv. Mater. 30 (2018) 1704007.
doi: 10.1002/adma.201704007
Y. Hu, T. Lv, Y. Ma, et al., Nano Lett. 19 (2019) 2731–2738.
doi: 10.1021/acs.nanolett.9b01093
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Ning Zhang , Mengjie Qin , Jiawen Zhu , Xuejing Lou , Xiao Tian , Wende Ma , Youmei Wang , Minghua Lu , Zongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
Zhuan Chen , Bo Yang , Jun Li , Kun Du , Jiangchen Fu , Xiao Wu , Jiazhen Cao , Mingyang Xing . Environmentally safe storage and sustained release of hydrogen peroxide utilizing commercial hydrogel. Chinese Chemical Letters, 2025, 36(6): 110320-. doi: 10.1016/j.cclet.2024.110320
Yixin Sun , Keke Yu , Xiuchun Guo , Lanlan Zong , Zhonggui He , Xiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
Ying Gao , Rong Zhou , Qiwen Wang , Shaolong Qi , Yuanyuan Lv , Shuang Liu , Jie Shen , Guocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521
Lei Zhu , Hai-Ruo Li , Yi-Ning Mao , Ruiying Liu , Bo Zhang , Jing Chen , Wengui Xu , Libo Zhang , Cheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921
Guizhi Zhu , Junrui Tan , Longfei Tan , Qiong Wu , Xiangling Ren , Changhui Fu , Zhihui Chen , Xianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669
Zhefei Hu , Jingwen Liao , Jiawen Zhou , Lulu Zhao , Yanjuan Liu , Yuefei Zhang , Wei Chen , Sheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985
Yao-Yu Ma , Wen-Juan Shi , Gang-Ding Wang , Xin Liu , Lei Hou , Yao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729
Quanquan Li , Chenzhu Zhao , Shanshan Jia , Qiang Chen , Xusheng Li , Mengyao She , Hua Liu , Ping Liu , Yaoyu Wang , Jianli Li . Design and fabrication of CuI/CuII-MOF-incorporated hydrogel photocatalysts for synergy removal of Cr(VI) and congo red. Chinese Chemical Letters, 2025, 36(5): 109936-. doi: 10.1016/j.cclet.2024.109936