-
[1]
R.J. DeBerardinis,C.B. Thompson, Cell 148 (2012) 1132–1144.
doi: 10.1016/j.cell.2012.02.032
-
[2]
C. Stringari, A. Cinquin, O. Cinquin, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 13582–13587.
doi: 10.1073/pnas.1108161108
-
[3]
C. Stringari, R.A. Edwards, K.T. Pate, et al., Sci. Rep. 2 (2012) 568.
doi: 10.1038/srep00568
-
[4]
T. Schroeder, H. Yuan, B.L. Viglianti, et al., Cancer. Res. 65 (2005) 5163–5171.
doi: 10.1158/0008-5472.CAN-04-3900
-
[5]
D.K. Bird, L. Yan, K.M. Vrotsos, et al., Cancer. Res. 65 (2005) 8766–8773.
doi: 10.1158/0008-5472.CAN-04-3922
-
[6]
K.P. Quinn, G.V. Sridharan, R.S. Hayden, et al., Sci. Rep. 3 (2013) 3432.
doi: 10.1038/srep03432
-
[7]
A. Podder, S. Koo, J. Lee, et al., Chem. Commun. 55 (2019) 537–540.
doi: 10.1039/c8cc08991d
-
[8]
B. Beuthien-Baumann, Radiologe. 58 (2018) 211–217.
doi: 10.1007/s00117-018-0355-y
-
[9]
L.E. Jennings, N.J. Long, Chem. Commun. 40 (2009) 3511–3524.
doi: 10.1039/b821903f
-
[10]
J.W. Chang, M. Bhuiyan, H.M. Tsai, et al., Angew. Chem. Int. Ed. 59 (2020) 15161–15165.
doi: 10.1002/anie.202004762
-
[11]
J.F. Dunn, E.S. Rhodes, T. Panz, Adv. Exp. Med. Biol. 428 (1997) 425–432.
doi: 10.1007/978-1-4615-5399-1_61
-
[12]
L. Sokoloff, Cogn. Neurodyn. 2 (2008) 1–5.
doi: 10.1007/s11571-007-9033-x
-
[13]
R. Mostany, A. Miquelajauregui, M. Shtrahman, C. Portera-Cailliau, Two-Photon Excitation Microscopy and Its Applications in Neuroscience, in: P.J. Verveer (Ed. ), Advanced Fluorescence Microscopy: Methods and Protocols, Eds., Springer Science Business Media, New York, 2015, pp. 25–42.
-
[14]
B. Belardi, A.D.L. Zerda, D.R. Spiciarich, et al., Angew. Chem. Int. Ed. 52 (2013) 14045–14049.
doi: 10.1002/anie.201307512
-
[15]
A. Bhattacharjee, R. Datta, E. Gratton, A.I. Hochbaum, Sci. Rep. 7 (2017) 3743.
doi: 10.1038/s41598-017-04032-w
-
[16]
L.P. Bernier, E.M. York, A. Kamyabi, et al., Nat. Commun. 11 (2020) 1559.
doi: 10.1038/s41467-020-15267-z
-
[17]
M. Zhang, M. Wen, Y. Xiong, et al., Chin. Chem. Lett. 29 (2018) 1509–1512.
doi: 10.1016/j.cclet.2018.04.026
-
[18]
P. Zhou, P. Lv, L. Yu, et al., Chin. Chem. Lett. 30 (2019) 1067–1070.
doi: 10.1016/j.cclet.2019.01.020
-
[19]
S.M. Wang, Y.A. Zhang, L.H. Zhang, et al., Chin. Chem. Lett. 29 (2018) 1513–1516.
doi: 10.1016/j.cclet.2018.08.002
-
[20]
L.K. Klaidman, A.C. Leung, J.D. Adams, Anal. Biochem. 228 (1995) 312–317.
doi: 10.1006/abio.1995.1356
-
[21]
R. Guarneri, V. Bonavita, Brain. Res. 2 (1966) 145–150.
doi: 10.1016/0006-8993(66)90019-9
-
[22]
Y. Avi-Dor, J.M. Olson, M.D. Doherty, N.O. Kaplan, J. Biol. Chem. 237 (1962) 2377–2383.
doi: 10.1016/S0021-9258(19)63448-4
-
[23]
M.A. Yaseen, S. Sakadžić, W. Wu, et al., Biomed. Opt. Express 4 (2013) 307–321.
doi: 10.1364/BOE.4.000307
-
[24]
C.A. Gómez, B. Fu, S. Sakadžić, M.A. Yaseen, Neurophotonics 5 (2018) 045008.
-
[25]
M.A. Yaseen, J. Sutin, W. Wu, et al., Biomed. Opt. Express 8 (2017) 2368–2385.
doi: 10.1364/BOE.8.002368
-
[26]
J.V. Chacko, K.W. Eliceiri, Methods Appl. Fluoresc. 7 (2019) 044005.
doi: 10.1088/2050-6120/ab47e5
-
[27]
M.A.K. Sagar, , J.N. Ouellette, K.P. Cheng, et al., Neurophotonics 7 (2020) 035003.
-
[28]
M. Wakita, G. Nishimura, M. Tamura, J. Biochem. 118 (1995) 1151–1160.
doi: 10.1093/oxfordjournals.jbchem.a125001
-
[29]
T.S. Blacker, M.R. Duchen, Free. Radic. Biol. Med. 100 (2016) 53–65.
-
[30]
K. Blinova, S. Carroll, S. Bose, et al., Biochemistry 44 (2005) 2585–2594.
doi: 10.1021/bi0485124
-
[31]
M.C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, et al., Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 19494–19499.
doi: 10.1073/pnas.0708425104
-
[32]
C. Ye, A. Periasamy, Microsc. Res. Techniq. 63 (2004) 72–80.
doi: 10.1002/jemt.10430
-
[33]
M.M. Moga, R.Y. Moore, J. Comp. Neurol. 389 (1997) 508–534.
doi: 10.1002/(SICI)1096-9861(19971222)389:3<508::AID-CNE11>3.0.CO;2-H
-
[34]
G. Yellen, J. Cell. Biol. 217 (2018) 2235–2246.
doi: 10.1083/jcb.201803152
-
[35]
R. Mongeon, V. Venkatachalam, G. Yellen, Antioxid. Redox. Sign. 25 (2016) 553–563.
doi: 10.1089/ars.2015.6593