Rhodium catalyzed asymmetric synthesis of Chiraphos derivatives
-
* Corresponding authors.
E-mail addresses: zhaoqy26@mail.sysu.edu.cn (Q. Zhao), qingweiz@ustc.edu.cn (Q.-W. Zhang).
Citation:
Ying-Ying Sun, Bin Zhang, Liangbin Yu, Ranran Cui, Qingyang Zhao, Qing-Wei Zhang. Rhodium catalyzed asymmetric synthesis of Chiraphos derivatives[J]. Chinese Chemical Letters,
;2022, 33(12): 5084-5087.
doi:
10.1016/j.cclet.2022.04.054
T.P. Dang, H.B. Kagan, Chem. Commun. (1971) 481.
H.B. Kagan, T.P. Dang, J. Am. Chem. Soc. 94 (1972) 6429–6433.
doi: 10.1021/ja00773a028
H.B. Kagan, N. Langlois, T.P. Dang, J. Organomet. Chem. 90 (1975) 353–365.
doi: 10.1016/S0022-328X(00)88129-2
B.D. Vineyard, W.S. Knowles, M.J. Sabacky, G.L. Bachman, D.J. Weinkauff, J. Am. Chem. Soc. 99 (1977) 5946–5952.
doi: 10.1021/ja00460a018
R. Noyori, T. Ohkuma, M. Kitamura, et al., J. Am. Chem. Soc. 109 (1987) 5856–5858.
doi: 10.1021/ja00253a051
W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029–3070.
doi: 10.1021/cr020049i
W. Zhang, X. Zhang, Bisphosphacycles–from DuPhos and BPE to a diverse set of broadly applied ligands, in: Q.L. Zhou (Ed. ), Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, 2011, pp. 55–91.
M. Dutartre, J. Bayardon, S. Jugé, Chem. Soc. Rev. 45 (2016) 5771–5794.
doi: 10.1039/C6CS00031B
T. Imamoto, Chem. Rec. 16 (2016) 2659–2673.
doi: 10.1002/tcr.201600098
H. Guo, Y.C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 118 (2018) 10049–10293.
doi: 10.1021/acs.chemrev.8b00081
H. Ni, W.L. Chan, Y. Lu, Chem. Rev. 118 (2018) 9344–9411.
doi: 10.1021/acs.chemrev.8b00261
G. Xu, C.H. Senanayake, W. Tang, Acc. Chem. Res. 52 (2019) 1101–1112.
doi: 10.1021/acs.accounts.9b00029
X.H. Kang, C. Qian, H. Yang, et al., Green Synth. Catal. 3 (2022) 185–189.
doi: 10.1016/j.gresc.2022.01.002
R. Mutin, W. Abboud, J.M. Bass, D. Sinou, J. Mol. Catal. 33 (1985) 47–59.
doi: 10.1016/0304-5102(85)85016-1
I. Ojima, N. Clos, C. Bastos, Tetrahedron 45 (1989) 6901–6939.
doi: 10.1016/S0040-4020(01)89159-6
R. Kadyrov, T.H. Riermeier, U. Dingerdissen, V. Tararov, A. Börner, J. Org. Chem. 68 (2003) 4067–4070.
doi: 10.1021/jo020690k
C.J. Scheuermann née Taylor, C. Jaekel, Adv. Synth. Catal. 350 (2008) 2708–2714.
doi: 10.1002/adsc.200800462
P. Mauleon, J.C. Carretero, Org. Lett. 6 (2004) 3195–3198.
doi: 10.1021/ol048690p
T. Nishikata, Y. Yamamoto, N. Miyaura, Chem. Commun. (2004) 1822–1823.
T. Nishikata, Y. Yamamoto, N. Miyaura, Chem. Lett. 34 (2005) 720–721.
doi: 10.1246/cl.2005.720
T. Nishikata, Y. Yamamoto, N. Miyaura, Chem. Lett. 36 (2007) 1442–1443.
doi: 10.1246/cl.2007.1442
K. Kurihara, N. Sugishita, K. Oshita, et al., J. Organomet. Chem. 692 (2007) 428–435.
doi: 10.1016/j.jorganchem.2006.04.042
X.Q. Yu, T. Shirai, Y. Yamamoto, N. Miyaura, Chem. Asian J. 6 (2011) 932–937.
doi: 10.1002/asia.201000589
M. Yamaguchi, T. Shima, T. Yamagishi, M. Hida, Tetrahedron: Asymmetry 2 (1991) 663–666.
E. Gomez-Bengoa, N.M. Heron, M.T. Didiuk, C.A. Luchaco, A.H. Hoveyda, J. Am. Chem. Soc. 120 (1998) 7649–7650.
doi: 10.1021/ja980499l
C. Jaekel, R Paciello, US Patent 7534921, 2006.
K. Campbell, C.A. Johnson, R. McDonald, et al., Angew. Chem. Int. Ed. 43 (2004) 5967–5971.
doi: 10.1002/anie.200461139
M. Sugiuchi, Y. Shichibu, K. Konishi, Angew. Chem. Int. Ed. 57 (2018) 7855–7859.
doi: 10.1002/anie.201804087
M.D. Fryzuk, B. Bosnich, J. Am. Chem. Soc. 99 (1977) 6262–6267.
doi: 10.1021/ja00461a014
J. Jansen, B.L. Feringa, Tetrahedron: Asymmetry 1 (1990) 719–720.
doi: 10.1016/S0957-4166(00)82382-4
M. Jin, M. Nakamura, Chem. Lett. 42 (2013) 1035–1037.
doi: 10.1246/cl.130375
U. Matteoli, V. Beghetto, C. Schiavon, A. Scrivanti, G. Menchi, Tetrahedron: Asymmetry 8 (1997) 1403–1409.
doi: 10.1016/S0957-4166(97)00132-8
V. Beghetto, U. Matteoli, A. Scrivanti, Chem. Commun. (2000) 155–156.
V. Hornillos, C. Vila, E. Otten, B.L. Feringa, Angew. Chem. Int. Ed. 54 (2015) 7867–7871.
doi: 10.1002/anie.201502987
W.J. Yue, J.Z. Xiao, S. Zhang, L. Yin, Angew. Chem. Int. Ed. 59 (2020) 7057–7062.
doi: 10.1002/anie.201916076
A. Kondoh, Ishikawa S, M. Terada, Org. Biomol. Chem. 18 (2020) 7814–7817.
doi: 10.1039/D0OB01778G
M. Sakai, H. Hayashi, N. Miyaura, Organometallics 16 (1997) 4229–4231.
doi: 10.1021/om9705113
Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai, N. Miyaura, J. Am. Chem. Soc. 120 (1998) 5579–5580.
doi: 10.1021/ja980666h
T. Hayashi, M. Takahashi, Y. Takaya, M. Ogasawara, J. Am. Chem. Soc. 124 (2002) 5052–5058.
doi: 10.1021/ja012711i
T. Hayashi, K. Yamasaki, Chem. Rev. 103 (2003) 2829–2844.
doi: 10.1021/cr020022z
A. Kina, H. Iwamura, T. Hayashi, J. Am. Chem. Soc. 128 (2006) 3904–3905.
doi: 10.1021/ja060225v
N. Lefevre, J.L. Brayer, B. Folléas, S. Darses, Org. Lett. 15 (2013) 4274–4276.
doi: 10.1021/ol402059w
T. Hayashi, K. Ueyama, N. Tokunaga, K. Yoshida, J. Am. Chem. Soc. 125 (2003) 11508–11509.
doi: 10.1021/ja037367z
R. Shintani, K. Ueyama, I. Yamada, T. Hayashi, Org. Lett. 6 (2004) 3425–3427.
doi: 10.1021/ol048421z
N. Tokunaga, Y. Otomaru, K. Okamoto, et al., J. Am. Chem. Soc. 126 (2004) 13584–13585.
doi: 10.1021/ja044790e
Y. Otomaru, K. Okamoto, R. Shintani, T. Hayashi, J. Org. Chem. 70 (2005) 2503–2508.
doi: 10.1021/jo047831y
R. Shintani, T. Kimura, T. Hayashi, Chem. Commun. (2005) 3213–3214.
R. Shintani, K. Okamoto, T. Hayashi, Org. Lett. 7 (2005) 4757–4759.
doi: 10.1021/ol051978+
R. Shintani, A. Tsurusaki, K. Okamoto, T. Hayashi, Angew. Chem. Int. Ed. 44 (2005) 3909–3912.
doi: 10.1002/anie.200500843
R. Shintani, Y. Ichikawa, T. Hayashi, et al., Org. Lett. 9 (2007) 4643–4645.
doi: 10.1021/ol702125q
S. Sörgel, N. Tokunaga, K. Sasaki, K. Okamoto, T. Hayashi, Org. Lett. 10 (2008) 589–592.
doi: 10.1021/ol702879u
R. Shintani, T. Hayashi, Aldrichim. Acta 42 (2009) 31–38.
C.G. Feng, M.H. Xu, G.Q. Lin, Synlett (2011) 1345–1356.
S. Abele, R. Inauen, D. Spielvogel, C. Moessner, J. Org. Chem. 77 (2012) 4765–4773.
doi: 10.1021/jo3005638
M. Nagamoto, T. Nishimura, ACS Catal. 7 (2017) 833–847.
doi: 10.1021/acscatal.6b02495
J.P. Chen, M.H. Xu, Org. Biomol. Chem. 18 (2020) 4569–4574.
doi: 10.1039/D0OB00616E
J. -P. Chen, Y. Li, C. Liu, et al., Org. Lett. 23 (2021) 571–577.
doi: 10.1021/acs.orglett.0c04099
R. Crabtree, Acc. Chem. Res. 12 (1979) 331–337.
doi: 10.1021/ar50141a005
R.H. Crabtree, M.W. Davis, J. Org. Chem. 51 (1986) 2655–2661.
doi: 10.1021/jo00364a007
J.M. Brown, Angew. Chem. Int. Ed. 26 (1987) 190–203.
doi: 10.1002/anie.198701901
D. Herault, N. Duc Hanh, D. Nuel, G. Buono, Chem. Soc. Rev. 44 (2015) 2508–2528.
doi: 10.1039/C4CS00311J
H. Brisset, Y. Gourdel, P. Pellon, M. Lecorre, Tetrahedron Lett. 34 (1993) 4523–4526.
doi: 10.1016/0040-4039(93)88075-T
Yanxin Jiang , Kwai Wun Cheng , Zhiping Yang , Jun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Xuling Pan , Wei Cai , You Huang . Recent advances in phosphine-mediated sequential annulations. Chinese Chemical Letters, 2025, 36(5): 110628-. doi: 10.1016/j.cclet.2024.110628
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
Yi-Fan Wang , Hao-Yun Yu , Hao Xu , Ya-Jie Wang , Xiaodi Yang , Yu-Hui Wang , Ping Tian , Guo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520
Yujia Shi , Yan Qiao , Pengfei Xie , Miaomiao Tian , Xingwei Li , Junbiao Chang , Bingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Bofei JIA , Zhihao LIU , Zongyuan GAO , Shuai ZHOU , Mengxiang WU , Qian ZHANG , Xiamei ZHANG , Shuzhong CHEN , Xiaohan YANG , Yahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317
Qi Li , Zi-Lu Wang , Yun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
Rui TIAN , Duo LI , Yuan REN , Jiamin CHAI , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Tiantian Gong , Yanan Chen , Shuo Wang , Miao Wang , Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405