Rhodium catalyzed asymmetric synthesis of Chiraphos derivatives
-
* Corresponding authors.
E-mail addresses: zhaoqy26@mail.sysu.edu.cn (Q. Zhao), qingweiz@ustc.edu.cn (Q.-W. Zhang).
Citation:
Ying-Ying Sun, Bin Zhang, Liangbin Yu, Ranran Cui, Qingyang Zhao, Qing-Wei Zhang. Rhodium catalyzed asymmetric synthesis of Chiraphos derivatives[J]. Chinese Chemical Letters,
;2022, 33(12): 5084-5087.
doi:
10.1016/j.cclet.2022.04.054
T.P. Dang, H.B. Kagan, Chem. Commun. (1971) 481.
H.B. Kagan, T.P. Dang, J. Am. Chem. Soc. 94 (1972) 6429–6433.
doi: 10.1021/ja00773a028
H.B. Kagan, N. Langlois, T.P. Dang, J. Organomet. Chem. 90 (1975) 353–365.
doi: 10.1016/S0022-328X(00)88129-2
B.D. Vineyard, W.S. Knowles, M.J. Sabacky, G.L. Bachman, D.J. Weinkauff, J. Am. Chem. Soc. 99 (1977) 5946–5952.
doi: 10.1021/ja00460a018
R. Noyori, T. Ohkuma, M. Kitamura, et al., J. Am. Chem. Soc. 109 (1987) 5856–5858.
doi: 10.1021/ja00253a051
W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029–3070.
doi: 10.1021/cr020049i
W. Zhang, X. Zhang, Bisphosphacycles–from DuPhos and BPE to a diverse set of broadly applied ligands, in: Q.L. Zhou (Ed. ), Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, 2011, pp. 55–91.
M. Dutartre, J. Bayardon, S. Jugé, Chem. Soc. Rev. 45 (2016) 5771–5794.
doi: 10.1039/C6CS00031B
T. Imamoto, Chem. Rec. 16 (2016) 2659–2673.
doi: 10.1002/tcr.201600098
H. Guo, Y.C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 118 (2018) 10049–10293.
doi: 10.1021/acs.chemrev.8b00081
H. Ni, W.L. Chan, Y. Lu, Chem. Rev. 118 (2018) 9344–9411.
doi: 10.1021/acs.chemrev.8b00261
G. Xu, C.H. Senanayake, W. Tang, Acc. Chem. Res. 52 (2019) 1101–1112.
doi: 10.1021/acs.accounts.9b00029
X.H. Kang, C. Qian, H. Yang, et al., Green Synth. Catal. 3 (2022) 185–189.
doi: 10.1016/j.gresc.2022.01.002
R. Mutin, W. Abboud, J.M. Bass, D. Sinou, J. Mol. Catal. 33 (1985) 47–59.
doi: 10.1016/0304-5102(85)85016-1
I. Ojima, N. Clos, C. Bastos, Tetrahedron 45 (1989) 6901–6939.
doi: 10.1016/S0040-4020(01)89159-6
R. Kadyrov, T.H. Riermeier, U. Dingerdissen, V. Tararov, A. Börner, J. Org. Chem. 68 (2003) 4067–4070.
doi: 10.1021/jo020690k
C.J. Scheuermann née Taylor, C. Jaekel, Adv. Synth. Catal. 350 (2008) 2708–2714.
doi: 10.1002/adsc.200800462
P. Mauleon, J.C. Carretero, Org. Lett. 6 (2004) 3195–3198.
doi: 10.1021/ol048690p
T. Nishikata, Y. Yamamoto, N. Miyaura, Chem. Commun. (2004) 1822–1823.
T. Nishikata, Y. Yamamoto, N. Miyaura, Chem. Lett. 34 (2005) 720–721.
doi: 10.1246/cl.2005.720
T. Nishikata, Y. Yamamoto, N. Miyaura, Chem. Lett. 36 (2007) 1442–1443.
doi: 10.1246/cl.2007.1442
K. Kurihara, N. Sugishita, K. Oshita, et al., J. Organomet. Chem. 692 (2007) 428–435.
doi: 10.1016/j.jorganchem.2006.04.042
X.Q. Yu, T. Shirai, Y. Yamamoto, N. Miyaura, Chem. Asian J. 6 (2011) 932–937.
doi: 10.1002/asia.201000589
M. Yamaguchi, T. Shima, T. Yamagishi, M. Hida, Tetrahedron: Asymmetry 2 (1991) 663–666.
E. Gomez-Bengoa, N.M. Heron, M.T. Didiuk, C.A. Luchaco, A.H. Hoveyda, J. Am. Chem. Soc. 120 (1998) 7649–7650.
doi: 10.1021/ja980499l
C. Jaekel, R Paciello, US Patent 7534921, 2006.
K. Campbell, C.A. Johnson, R. McDonald, et al., Angew. Chem. Int. Ed. 43 (2004) 5967–5971.
doi: 10.1002/anie.200461139
M. Sugiuchi, Y. Shichibu, K. Konishi, Angew. Chem. Int. Ed. 57 (2018) 7855–7859.
doi: 10.1002/anie.201804087
M.D. Fryzuk, B. Bosnich, J. Am. Chem. Soc. 99 (1977) 6262–6267.
doi: 10.1021/ja00461a014
J. Jansen, B.L. Feringa, Tetrahedron: Asymmetry 1 (1990) 719–720.
doi: 10.1016/S0957-4166(00)82382-4
M. Jin, M. Nakamura, Chem. Lett. 42 (2013) 1035–1037.
doi: 10.1246/cl.130375
U. Matteoli, V. Beghetto, C. Schiavon, A. Scrivanti, G. Menchi, Tetrahedron: Asymmetry 8 (1997) 1403–1409.
doi: 10.1016/S0957-4166(97)00132-8
V. Beghetto, U. Matteoli, A. Scrivanti, Chem. Commun. (2000) 155–156.
V. Hornillos, C. Vila, E. Otten, B.L. Feringa, Angew. Chem. Int. Ed. 54 (2015) 7867–7871.
doi: 10.1002/anie.201502987
W.J. Yue, J.Z. Xiao, S. Zhang, L. Yin, Angew. Chem. Int. Ed. 59 (2020) 7057–7062.
doi: 10.1002/anie.201916076
A. Kondoh, Ishikawa S, M. Terada, Org. Biomol. Chem. 18 (2020) 7814–7817.
doi: 10.1039/D0OB01778G
M. Sakai, H. Hayashi, N. Miyaura, Organometallics 16 (1997) 4229–4231.
doi: 10.1021/om9705113
Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai, N. Miyaura, J. Am. Chem. Soc. 120 (1998) 5579–5580.
doi: 10.1021/ja980666h
T. Hayashi, M. Takahashi, Y. Takaya, M. Ogasawara, J. Am. Chem. Soc. 124 (2002) 5052–5058.
doi: 10.1021/ja012711i
T. Hayashi, K. Yamasaki, Chem. Rev. 103 (2003) 2829–2844.
doi: 10.1021/cr020022z
A. Kina, H. Iwamura, T. Hayashi, J. Am. Chem. Soc. 128 (2006) 3904–3905.
doi: 10.1021/ja060225v
N. Lefevre, J.L. Brayer, B. Folléas, S. Darses, Org. Lett. 15 (2013) 4274–4276.
doi: 10.1021/ol402059w
T. Hayashi, K. Ueyama, N. Tokunaga, K. Yoshida, J. Am. Chem. Soc. 125 (2003) 11508–11509.
doi: 10.1021/ja037367z
R. Shintani, K. Ueyama, I. Yamada, T. Hayashi, Org. Lett. 6 (2004) 3425–3427.
doi: 10.1021/ol048421z
N. Tokunaga, Y. Otomaru, K. Okamoto, et al., J. Am. Chem. Soc. 126 (2004) 13584–13585.
doi: 10.1021/ja044790e
Y. Otomaru, K. Okamoto, R. Shintani, T. Hayashi, J. Org. Chem. 70 (2005) 2503–2508.
doi: 10.1021/jo047831y
R. Shintani, T. Kimura, T. Hayashi, Chem. Commun. (2005) 3213–3214.
R. Shintani, K. Okamoto, T. Hayashi, Org. Lett. 7 (2005) 4757–4759.
doi: 10.1021/ol051978+
R. Shintani, A. Tsurusaki, K. Okamoto, T. Hayashi, Angew. Chem. Int. Ed. 44 (2005) 3909–3912.
doi: 10.1002/anie.200500843
R. Shintani, Y. Ichikawa, T. Hayashi, et al., Org. Lett. 9 (2007) 4643–4645.
doi: 10.1021/ol702125q
S. Sörgel, N. Tokunaga, K. Sasaki, K. Okamoto, T. Hayashi, Org. Lett. 10 (2008) 589–592.
doi: 10.1021/ol702879u
R. Shintani, T. Hayashi, Aldrichim. Acta 42 (2009) 31–38.
C.G. Feng, M.H. Xu, G.Q. Lin, Synlett (2011) 1345–1356.
S. Abele, R. Inauen, D. Spielvogel, C. Moessner, J. Org. Chem. 77 (2012) 4765–4773.
doi: 10.1021/jo3005638
M. Nagamoto, T. Nishimura, ACS Catal. 7 (2017) 833–847.
doi: 10.1021/acscatal.6b02495
J.P. Chen, M.H. Xu, Org. Biomol. Chem. 18 (2020) 4569–4574.
doi: 10.1039/D0OB00616E
J. -P. Chen, Y. Li, C. Liu, et al., Org. Lett. 23 (2021) 571–577.
doi: 10.1021/acs.orglett.0c04099
R. Crabtree, Acc. Chem. Res. 12 (1979) 331–337.
doi: 10.1021/ar50141a005
R.H. Crabtree, M.W. Davis, J. Org. Chem. 51 (1986) 2655–2661.
doi: 10.1021/jo00364a007
J.M. Brown, Angew. Chem. Int. Ed. 26 (1987) 190–203.
doi: 10.1002/anie.198701901
D. Herault, N. Duc Hanh, D. Nuel, G. Buono, Chem. Soc. Rev. 44 (2015) 2508–2528.
doi: 10.1039/C4CS00311J
H. Brisset, Y. Gourdel, P. Pellon, M. Lecorre, Tetrahedron Lett. 34 (1993) 4523–4526.
doi: 10.1016/0040-4039(93)88075-T
Zhi Jiang Ji , Jing Yang Jiang , Yan Hua Wang . A novel thermoregulated phosphine ligand used for the Rh-catalyzed hydroformylation of mixed C11-12 olefins in aqueous/organic biphasic system. Chinese Chemical Letters, 2010, 21(5): 515-518. doi: 10.1016/j.cclet.2010.01.020
Ya Dong Lu , Yan Hua Wang , Zi Lin Jin . Rh nanoparticles stabilized by PEG-substituted triphenyl-phosphine:A highly active and recyclable catalyst for aqueous biphasic hydrogenation of benzene. Chinese Chemical Letters, 2010, 21(9): 1067-1070. doi: 10.1016/j.cclet.2010.04.013
Wei Wei , Yan Hua Wang , Jing Yang Jiang , Zi Lin Jin . A novel phosphate ligand used for the Rh-catalyzed hydroformylation of cyclohexene in a thermoregulated PEG biphase system. Chinese Chemical Letters, 2007, 18(8): 933-935. doi: 10.1016/j.cclet.2007.05.044
Fan Zhi KONG , Xiao Lai ZHENG , Zi Lin JIN . Aqueous Biphasic Hydroformylation of Oleyl Alcohol Catalyzed by Thermoregulated Rhodium Complex. Chinese Chemical Letters, 2003, 14(9): 917-919.
Chang Xiu Han , Ji Li Ren , Xue Jiao Tang , Bao Gui Zhang . Preparation of nanometer FeCuP alloy and its application in decomposition of PH3. Chinese Chemical Letters, 2007, 18(10): 1285-1288. doi: 10.1016/j.cclet.2007.08.005
Zheng Xue-Li , Zheng Cong-Ye , Zhou Fan-Ding , Fu Hai-Yan , Yuan Mao-Lin , Li Rui-Xiang , Xu Bin , Chen Hua . Highly active rhodium/phosphorus catalytic system for the hydroformylation of α-methylstyrene. Chinese Chemical Letters, 2016, 27(5): 678-680. doi: 10.1016/j.cclet.2016.01.028
Bo Li , Shihao Liu , Wu Fan , Xiaotong Shen , Jing Xu , Suhua Li . Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes. Chinese Chemical Letters, 2023, 34(7): 108027-1-108027-5. doi: 10.1016/j.cclet.2022.108027
Shen Zhihao , Pi Chao , Cui Xiuling , Wu Yangjie . Rhodium(Ⅲ)-catalyzed intermolecular cyclization of anilines with sulfoxonium ylides toward indoles. Chinese Chemical Letters, 2019, 30(7): 1374-1378. doi: 10.1016/j.cclet.2019.01.033
Zou Hongyan , Wang Zhong-Liang , Cao Yang , Huang Genping . Mechanism of rhodium(Ⅲ)-catalyzed formal C(sp3)-H activation/spiroannulation of α-arylidene pyrazolones with alkynes:A computational study. Chinese Chemical Letters, 2018, 29(9): 1355-1358. doi: 10.1016/j.cclet.2017.10.034
Yuanhong Cai , Donghang Tan , Qiqi Zhang , Wenxin Lv , Qingjiang Li , Honggen Wang . Synthesis of difluoromethylated benzylborons via rhodium(I)-catalyzed fluorine-retainable hydroboration of gem-difluoroalkenes. Chinese Chemical Letters, 2021, 32(1): 417-420. doi: 10.1016/j.cclet.2020.03.031
Yuncan Chen , Shan Lv , Ruizhi Lai , Yingying Xu , Xin Huang , Jianglian Li , Guanghui Lv , Yong Wu . Synthesis of 2-aminothiazoles via rhodium-catalyzed carbenoid insertion/annulation of sulfoxonium ylides with thioureas. Chinese Chemical Letters, 2021, 32(8): 2555-2558. doi: 10.1016/j.cclet.2021.02.052
Wang Lianhui , Xiong Dan , Jie Lianghua , Yu Chudan , Cui Xiuling . Rhodium-catalyzed oxidative homologation of N-pyrimidyl indolines with alkynes via dual C—H activation: Facile synthesis of benzo[g] indolines. Chinese Chemical Letters, 2018, 29(6): 907-910. doi: 10.1016/j.cclet.2018.05.007
Yimiao He , Limei Tian , Xuexue Chang , Zeming Qu , Yanmin Huang , Chusheng Huang , Qing Sun , Honggen Wang . Rhodium-catalyzed formal [4 + 3] annulation reaction of N-methoxybenzamides with gem-difluorocyclopropenes: A combination of experimental and theoretical studies. Chinese Chemical Letters, 2022, 33(6): 2987-2992. doi: 10.1016/j.cclet.2022.01.068
Song Yanying , Wang Lili , Duan Zheng , Mathey François . Divergent intramolecular reactions between phosphines and alkynes. Chinese Chemical Letters, 2020, 31(2): 329-332. doi: 10.1016/j.cclet.2019.05.053
Han Ying , Zheng Hui , Zhang Yuan-Yuan , Yan Chao-Guo . Molecular diversity of triphenylphosphine promoted reaction of electron-deficient alkynes and arylidene Meldrum acid (N, N'-dimethylbarbituric acid). Chinese Chemical Letters, 2020, 31(5): 1337-1341. doi: 10.1016/j.cclet.2019.10.042
Yoon Hee Jung , Kim Seog K. , Huang Weixin , Sohn Youngku . Comparable electrocatalytic performances of carbon- and Rh-loaded SrTiO3 nanoparticles. Chinese Chemical Letters, 2018, 29(6): 800-804. doi: 10.1016/j.cclet.2018.01.021
Min Liu , Haiying Zhao , Changkun Li . Rh(Ⅰ)-catalyzed regio- and enantioselective allylic alkylation of Meldrum's acid. Chinese Chemical Letters, 2021, 32(1): 385-388. doi: 10.1016/j.cclet.2020.04.009
Peng Gao , Miaolin Ke , Tong Ru , Guanfeng Liang , Fen-Er Chen . Synthesis of rac-α-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst. Chinese Chemical Letters, 2022, 33(2): 830-834. doi: 10.1016/j.cclet.2021.07.068
Lijie Zhu , Chunhai Li , Qinbai Yun , Sumei Han , Yong Lv , Qipeng Lu , Junze Chen . Recent advances of Rh-based intermetallic nanomaterials for catalytic applications. Chinese Chemical Letters, 2023, 34(11): 108515-1-108515-11. doi: 10.1016/j.cclet.2023.108515
Yuan Yong YAN , Huan Pei ZUO , Zi Lin JIN . AQUEOUS PHASE RHODIUM HYDROFORMYLATION OF DODECENE-1 WITH SURFACE ACTIVE WATER-SOLUBLE PHOSPHINE. Chinese Chemical Letters, 1996, 7(4): 377-380.