Recent advances in gold-complex and chiral organocatalyst cooperative catalysis for asymmetric alkyne functionalization
-
* Corresponding author.
E-mail address: xuxinfang@mail.sysu.edu.cn (X. Xu).
Citation:
Ming Bao, Su Zhou, Wenhao Hu, Xinfang Xu. Recent advances in gold-complex and chiral organocatalyst cooperative catalysis for asymmetric alkyne functionalization[J]. Chinese Chemical Letters,
;2022, 33(12): 4969-4979.
doi:
10.1016/j.cclet.2022.04.050
A.S.K. Hashmi, M. Rudolpha, Chem. Soc. Rev. 37 (2008) 1766–1775.
doi: 10.1039/b615629k
Z. Li, C. Brouwer, C. He, Chem. Rev. 108 (2008) 3239–3265.
doi: 10.1021/cr068434l
R.K. Shiroodi, V. Gevorgyan, Chem. Soc. Rev. 42 (2013) 4991–5001.
doi: 10.1039/c3cs35514d
A. Fürstner, Acc. Chem. Res. 47 (2014) 925–938.
doi: 10.1021/ar4001789
R. Dorel, A.M. Echavarren, Chem. Rev. 115 (2015) 9028–9072.
doi: 10.1021/cr500691k
L. Ye, X. Zhu, R. Sahani, et al., Chem. Rev. 121 (2021) 9039–9112.
doi: 10.1021/acs.chemrev.0c00348
D. Campeau, D. León Rayo, A. Mansour, K. Muratov, F. Gagosz, Chem. Rev. 121 (2021) 8756–8867.
doi: 10.1021/acs.chemrev.0c00788
D. Li, W. Zang, M.J. Bird, C. Hyland, M. Shi, Chem. Rev. 121 (2021) 8685–8755.
doi: 10.1021/acs.chemrev.0c00624
R. Reyes, T. Iwai, M. Sawamura, Chem. Rev. 121 (2021) 8926–8947.
doi: 10.1021/acs.chemrev.0c00793
E. Jiménez-Núñez, A.M. Echavarren, Chem. Rev. 108 (2008) 3326–3350.
doi: 10.1021/cr0684319
A. Arcadi, Chem. Rev. 108 (2008) 3266–3325.
doi: 10.1021/cr068435d
A.M. Asiria, A.S.K. Hashmi, Chem. Soc. Rev. 45 (2016) 4471–4503.
doi: 10.1039/C6CS00023A
D. Day, P. Chan, Adv. Synth. Catal. 358 (2016) 1368–1384.
doi: 10.1002/adsc.201600005
F. Hong, L. Y, Acc. Chem. Res. 53 (2020) 2003–2019.
doi: 10.1021/acs.accounts.0c00417
Z. Zheng, X. Ma, X. Cheng, et al., Chem. Rev. 121 (2021) 8979–9038.
doi: 10.1021/acs.chemrev.0c00774
S. Zheng, C.M. Schienebeck, W. Zhang, H. Wang, W. Tang, Asian J. Org. Chem. 3 (2014) 366–376.
doi: 10.1002/ajoc.201400030
D.V. Patil, S. Shin, Asian J. Org. Chem. 8 (2019) 63–73.
doi: 10.1002/ajoc.201800632
S. Witzel, A.S.K. Hashmi, J. Xie, Chem. Rev. 121 (2021) 8868–8925.
doi: 10.1021/acs.chemrev.0c00841
Y. Zhang, Y. Chen, J. Liu, et al., Nat. Chem. 13 (2021) 1093–1100.
doi: 10.1038/s41557-021-00778-z
Y. Wang, A.D. Lackner, F.D. Toste, Acc. Chem. Res. 47 (2014) 889–901.
doi: 10.1021/ar400188g
C.C. Lynch, A. Sripada, C. Wolf, Chem. Soc. Rev. 49 (2020) 8543–8583.
doi: 10.1039/d0cs00769b
A. Fürstner, Acc. Chem. Res. 54 (2021) 861–874.
doi: 10.1021/acs.accounts.0c00759
R. Dorel, A.M. Echavarren, Acc. Chem. Res. 52 (2019) 1812–1823.
doi: 10.1021/acs.accounts.9b00227
W.E. Brenzovich, Angew. Chem. Int. Ed. 51 (2012) 8933–8935.
doi: 10.1002/anie.201204598
Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 108 (1986) 6405–6406.
doi: 10.1021/ja00280a056
R.A. Widenhoefer, Chem. Commun. 14 (2008) 5382–5391.
doi: 10.1002/chem.200800219
W. Zi, F.D. Toste, Chem. Soc. Rev. 45 (2016) 4567–4589.
doi: 10.1039/C5CS00929D
Y. Li, W. Li, J. Zhang, Chem. Eur. J. 23 (2016) 467–512.
X. Cheng, L. Zhang, CCS Chem. 2 (2020) 1989–2002.
J. Jiang, M. Wong, Chem Asian J. 16 (2021) 364–377.
doi: 10.1002/asia.202001375
S. Mayer, B. List, Angew. Chem. Int. Ed. 45 (2006) 4193–4195.
doi: 10.1002/anie.200600512
M. Rueping, A.P. Antonchick, C. Brickmann, Angew. Chem. Int. Ed. 46 (2007) 6903–6906.
doi: 10.1002/anie.200702439
G.L. Hamilton, E.J. Kang, M. Mba, F.D. Toste, Science 317 (2007) 496–499.
doi: 10.1126/science.1145229
R.L. LaLonde, Z.J. Wang, M. Mba, A.D. Lackner, F.D. Toste, Angew. Chem. Int. Ed. 49 (2010) 598–601.
doi: 10.1002/anie.200905000
M.E. Muratore, C.A. Holloway, A.W. Pilling, et al., J. Am. Chem. Soc. 131 (2009) 10796–10797.
doi: 10.1021/ja9024885
Z. Han, H. Xiao, X. Chen, L. Gong, J. Am. Chem. Soc. 131 (2009) 9182–9183.
doi: 10.1021/ja903547q
X. Tu, L. Gong, Angew. Chem. Int. Ed. 51 (2012) 11346–11349.
doi: 10.1002/anie.201204179
K. Aikawa, M. Kojima, K. Mikami, Angew. Chem. Int. Ed. 48 (2009) 6073–6077.
doi: 10.1002/anie.200902084
X. Liu, Y. Xiao, F. Siu, et al., Org. Biomol. Chem. 10 (2012) 7208–7219.
doi: 10.1039/c2ob25753j
M. Raducan, M. Moreno, C. Bours, A.M. Echavarren, Chem. Commun. 48 (2012) 52–54.
doi: 10.1039/C1CC15739F
A.K. Mourad, J. Leutzow, C. Czekelius, Angew. Chem. Int. Ed. 51 (2012) 11149–11152.
doi: 10.1002/anie.201205416
R. Quach, D.P. Furkert, M.A. Brimble, Tetrahedron Lett. 54 (2013) 5865–5868.
doi: 10.1016/j.tetlet.2013.08.077
L. Cala, A. Mendoza, F.J. Fañanás, F. Rodríguez, Chem. Commun. 48 (2013) 2715–2717.
doi: 10.1039/c3cc00118k
A.S.K. Hashmi, C. Hubbert, Angew. Chem. Int. Ed. 49 (2010) 1010–1012.
doi: 10.1002/anie.200906609
C. Loh, D. Enders, Chem. Eur. J. 18 (2012) 10212–10225.
doi: 10.1002/chem.201200287
S. Inamdar, A. Konala, N.T. Patil, Chem. Commun. 50 (2014) 15124–15135.
doi: 10.1039/C4CC04633A
Z. Zhang, V. Smal, P. Retailleau, et al., J. Am. Chem. Soc. 142 (2020) 3797–3805.
doi: 10.1021/jacs.9b11154
Y. Yu, Z. Zhang, A. Voituriez, et al., Chem. Commun. 57 (2021) 10779–10782.
doi: 10.1039/d1cc04088j
A.E. Allen, D.W.C. MacMillan, Chem. Sci. 3 (2012) 633–658.
doi: 10.1039/c2sc00907b
Z. Du, Z. Shao, Chem. Soc. Rev. 42 (2013) 1337–1378.
doi: 10.1039/C2CS35258C
D. Chen, Z. Han, X. Zhou, L. Gong, Acc. Chem. Res. 47 (2014) 2365–2377.
doi: 10.1021/ar500101a
D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 114 (2014) 9047–9153.
doi: 10.1021/cr5001496
S.M. Inamdar, V.S. Shinde, N.T. Patil, Org. Biomol. Chem. 13 (2015) 8116–8162.
doi: 10.1039/C5OB00986C
S. Afewerki, A. Córdova, Chem. Rev. 116 (2016) 13512–13570.
doi: 10.1021/acs.chemrev.6b00226
M.H. Wang, K.A. Scheidt, Angew. Chem. Int. Ed. 55 (2016) 14912–14922.
doi: 10.1002/anie.201605319
Z. Cheng, J. Guo, Z. Lu, Chem. Commun. 56 (2020) 2229–2239.
doi: 10.1039/d0cc00068j
A.S.K. Hashmi, P. Haufe, C. Schmid, A.R. Nass, W. Frey, Chem. Eur. J. 12 (2006) 5376–5382.
doi: 10.1002/chem.200600192
J. Li, L. Lin, B. Hu, et al., Angew. Chem. Int. Ed. 55 (2016) 6075–6078.
doi: 10.1002/anie.201601701
B. Hu, J. Li, W. Cao, et al., Adv. Synth. Catal. 360 (2018) 2831–2835.
doi: 10.1002/adsc.201800576
J. Li, L. Lin, B. Hu, et al., Angew. Chem. Int. Ed. 56 (2017) 885–888.
doi: 10.1002/anie.201611214
X. Hu, X. Tang, X. Zhang, L. Lin, X. Feng, Nat. Commun. (2021) 3012.
J. Gong, Q. Wan, Q. Kang, Adv. Synth. Catal. 360 (2018) 4031–4036.
doi: 10.1002/adsc.201800492
H. Wang, T. Zeng, W. Chang, L. Liu, J. Li, Org. Lett. 23 (2021) 3573–3577.
doi: 10.1021/acs.orglett.1c00976
X. Liu, C, Che, Org. Lett. 11 (2009) 4204–4207.
doi: 10.1021/ol901443b
X. Liu, Y. Xiao, F. Siu, et al., Org. Biomol. Chem. 10 (2012) 7208–7219.
doi: 10.1039/c2ob25753j
Z. Han, H. Xiao, X. Chen, L. Gong, J. Am. Chem. Soc. 131 (2009) 9182–9183.
doi: 10.1021/ja903547q
N.T. Patil, V.S. Raut, R.B. Tella, Chem. Commun. 49 (2013) 570–572.
doi: 10.1039/C2CC37623G
S. Zhou, K. Junge, M. Beller, Chem. Eur. J. 18 (2012) 9005–9010.
doi: 10.1002/chem.201200109
M.E. Muratore, C.A. Holloway, A.W. Pilling, et al., J. Am. Chem. Soc. 131 (2009) 10796–10797.
doi: 10.1021/ja9024885
A.W. Gregory, P. Jakubec, P. Turner, D.J. Dixon, Org. Lett. 15 (2013) 4330–4333.
doi: 10.1021/ol401784h
V.S. Shinde, M.V. Mane, K. Vanka, A. Mallick, N.T. Patil, Chem. Eur. J. 21 (2015) 975–979.
doi: 10.1002/chem.201405061
A.A. Rexit, M. Mailikezati, Tetrahedron Lett. 56 (2015) 2651–2655.
doi: 10.1016/j.tetlet.2015.03.007
R. Liu, S. Ye, C. Lu, et al., Angew. Chem. Int. Ed. 54 (2015) 11205–11208.
doi: 10.1002/anie.201504697
P. Wang, K. Li, X. Zhou, et al., Chem. Eur. J. 19 (2013) 6234–6238.
doi: 10.1002/chem.201300702
X. Wu, M. Li, P. Wang, J. Org. Chem. 79 (2014) 419–425.
doi: 10.1021/jo4024232
F. Zhao, N. Li, Y. Zhu, Z. Han, Org. Lett. 18 (2016) 1506–1509.
doi: 10.1021/acs.orglett.6b00012
Z. Han, D. Chen, Y. Wang, et al., J. Am. Chem. Soc. 134 (2012) 6532–6535.
doi: 10.1021/ja3007148
H. Wu, Y. He, L. Gong, Org. Lett. 15 (2013) 460–463.
doi: 10.1021/ol303188u
J. Calleja, A.B. González-Pérez, Á. R. Lera, et al., Chem. Sci. 5 (2014) 996–1007.
doi: 10.1039/C3SC52891J
C. He, J. Cai, Y. Zheng, et al., ACS Omega 4 (2019) 15754–15763.
doi: 10.1021/acsomega.9b02693
Y. He, H. Wu, D. Chen, J. Yu, L. Gong, Chem. Eur. J. 19 (2013) 5232–5237.
doi: 10.1002/chem.201300052
Z. Cao, J. Zhou, Org. Chem. Front. 2 (2015) 849–858.
doi: 10.1039/C5QO00092K
B. Trost, M. Brennan, Synthesis (Mass) 18 (2009) 3003–3025.
doi: 10.1055/s-0029-1216975
G. Singh, Z. Desta, Chem. Rev. 112 (2012) 6104–6155.
doi: 10.1021/cr300135y
L. Hong, R. Wang, Adv. Synth. Catal. 355 (2013) 1023–1052.
doi: 10.1002/adsc.201200808
X. Lv, S. Liu, S. Zhou, et al., CCS Chem. 2 (2020) 1903–1912.
C. Wang, Z. Han, H. Luo, L. Gong, Org. Lett. 12 (2010) 2266–2269.
doi: 10.1021/ol1006086
D.M. Barber, H.J. Sanganee, D.J. Dixon, Org. Lett. 14 (2012) 5290–5293.
doi: 10.1021/ol302459c
X. Chen, H. Chen, X. Ji, et al., Org. lett. 15 (2013) 1846–1849.
doi: 10.1021/ol4004542
W. Guo, L. Li, Q. Ding, et al., ACS Catal. 8 (2018) 10180–10189.
doi: 10.1021/acscatal.8b02157
S. Belot, K.A. Vogt, C. Besnard, N. Krause, A. Alexakis, Angew. Chem. Int. Ed. 48 (2009) 8923–8926.
doi: 10.1002/anie.200903905
C.C.J. Loh, J. Badorrek, G. Raabe, D. Enders, Chem. Eur. J. 17 (2011) 13409–13414.
doi: 10.1002/chem.201102793
D. Hack, C. Loh, J.M. Hartmann, G. Raabe, D. Enders, Chem. Eur. J. 20 (2014) 3917–3921.
doi: 10.1002/chem.201400407
X. Wu, M. Li, D. Chen, S. Chen, J. Org. Chem. 79 (2014) 4743–4750.
doi: 10.1021/jo5006729
J. Jin, Y. Zhao, E. Sze, P. Kothandaraman, P. Chan, Adv. Synth. Catal. 360 (2018) 4744–4753.
doi: 10.1002/adsc.201801178
D. Qian, J. Zhang, Chem. Eur. J. 19 (2013) 6984–6988.
doi: 10.1002/chem.201301208
H. Wei, M. Bao, K. Dong, et al., Angew. Chem. Int. Ed. 57 (2018) 17200–17204.
doi: 10.1002/anie.201812140
S. Zhou, X. Xie, X. Xu, et al., Chem. Commun. 57 (2021) 12171–12174.
doi: 10.1039/d1cc04830a
S. Zhou, Y. Li, X. Liu, et al., J. Am. Chem. Soc. 143 (2021) 14703–14711.
doi: 10.1021/jacs.1c06178
X. Xu, Y. Qian, L. Yang, W. Hu, Chem. Commun. 47 (2011) 797–799.
doi: 10.1039/C0CC03024D
C. Yu, P. Ji, Y. Zhang, X. Meng, W. Wang, Org. Lett. 23 (2021) 7656–7660.
doi: 10.1021/acs.orglett.1c02916
G. Dong, M. Bao, X. Xie, et al., Angew. Chem. Int. Ed. 60 (2021) 1992–1999.
doi: 10.1002/anie.202012678
Tao Lin , Xin Zhang , Rong Li , Ting Bai , Si Ying Yang . Synergistic catalysis of isolated Fe3+ and Fe2O3 on FeOx/HZSM-5 catalysts for Friedel-Crafts benzylation of benzene. Chinese Chemical Letters, 2011, 22(6): 639-642. doi: 10.1016/j.cclet.2010.12.034
Zhang Fusong , Lai Qi , Shi Xiaodong , Song Zhiguang . Triazole-gold (TAAu) catalyzed three-component coupling (A3 reaction) towards the synthesis of 2, 4-disubstituted quinoline derivatives. Chinese Chemical Letters, 2019, 30(2): 392-394. doi: 10.1016/j.cclet.2018.05.036
Cao Weidi , Liu Xiaohua , Feng Xiaoming . Chiral organobases: Properties and applications in asymmetric catalysis. Chinese Chemical Letters, 2018, 29(8): 1201-1208. doi: 10.1016/j.cclet.2018.05.041
Pengyu Wu , Chun Cai . Supported Pt-Ni bimetallic nanoparticles catalyzed hydrodeoxygenation of dibenzofuran with high selectivity to bicyclohexane. Chinese Chemical Letters, 2022, 33(1): 234-238. doi: 10.1016/j.cclet.2021.05.059
Hui WANG , Wei Wei PEI , Guo Bin SUN , Wei Ping YE . Study on Bicoordination Chiral Inducement Catalysis of (R)-4-Thiazolidinecarboxylic Acid. Chinese Chemical Letters, 2004, 15(12): 1419-1422.
Huang Weixin , Wu Zili , Tang Junwang , Wei Wei David , Guo Xuefeng . Surface chemistry connecting heterogeneous catalysis, photocatalysis and plasmonic catalysis. Chinese Chemical Letters, 2018, 29(6): 725-726. doi: 10.1016/j.cclet.2018.05.021
Can Li , Tao Zhang . A Year of Innovation for Chinese Journal of Catalysis. Chinese Journal of Catalysis, 2015, 36(1): 1-1. doi: 10.1016/S1872-2067(14)60260-6
Dr. Dangsheng Su . Preface to Special Issue on Carbon in Catalysis. Chinese Journal of Catalysis, 2014, 35(6): 777-777. doi: 10.1016/S1872-2067(14)60142-X
Qiang Fu , Xinhe Bao . Catalysis on a metal surface with a graphitic cover. Chinese Journal of Catalysis, 2015, 36(4): 517-519. doi: 10.1016/S1872-2067(15)60828-2
Da Wei GUO , Xiao Zhen YANG . Molecular Mechanics Study on Asymmetry Catalysis. Chinese Chemical Letters, 1999, 10(9): 751-754.
Zhang Ruipu , Luo Sanzhong . Bio-inspired quinone catalysis. Chinese Chemical Letters, 2018, 29(8): 1193-1200. doi: 10.1016/j.cclet.2018.02.009
Tao Rui , Guo-Ping Lu , Xin Zhao , Xun Cao , Zhong Chen . The synergistic catalysis on Co nanoparticles and CoNx sites of aniline-modified ZIF derived Co@NCs for oxidative esterification of HMF. Chinese Chemical Letters, 2021, 32(2): 685-690. doi: 10.1016/j.cclet.2020.06.027
Fan Jiang , Chunzheng Yang , Binbin Ding , Shuang Liang , Yajie Zhao , Ziyong Cheng , Min Liu , Bengang Xing , Ping'an Ma , Jun Lin . Tumor microenvironment-responsive MnSiO3-Pt@BSA-Ce6 nanoplatform for synergistic catalysis-enhanced sonodynamic and chemodynamic cancer therapy. Chinese Chemical Letters, 2022, 33(6): 2959-2964. doi: 10.1016/j.cclet.2021.12.096
Kuiling Ding , Yonggui Zhou . Preface to Special Issue on Catalysis in Organic Synthesis. Chinese Journal of Catalysis, 2015, 36(1): 2-2. doi: 10.1016/S1872-2067(14)60266-7
De Chen , Anders Holmen , Zhijun Sui , Xinggui Zhou . Carbon mediated catalysis:A review on oxidative dehydrogenation. Chinese Journal of Catalysis, 2014, 35(6): 824-841. doi: 10.1016/S1872-2067(14)60120-0
Guanzhong Lu . Preface to Special Issue on Rare Earth Catalysis. Chinese Journal of Catalysis, 2014, 35(8): 1237-1237. doi: 10.1016/S1872-2067(14)60188-1
Guanzhong Lu . Preface to Special Issue on Rare Earth Catalysis. Chinese Journal of Catalysis, 2014, 35(8): 1237-1237. doi: 10.1016/S1872-2067(14)60188-1
Jihong Yu , Feng-Shou Xiao , Avelino Corma . Preface to Special Issue on Zeolite Materials and Catalysis. Chinese Journal of Catalysis, 2015, 36(6): 787-788. doi: 10.1016/S1872-2067(15)60876-2
Junsong Zhong , Yi Yu , Dongliang Zhang , Keyin Ye . Merging cobalt catalysis and electrochemistry in organic synthesis☆. Chinese Chemical Letters, 2021, 32(3): 963-972. doi: 10.1016/j.cclet.2020.08.011
Kaiya Wang , Xueqi Tian , Jacobs H. Jordan , Krishnasamy Velmurugan , Leyong Wang , Xiao-Yu Hu . The emerging applications of pillararene architectures in supramolecular catalysis. Chinese Chemical Letters, 2022, 33(1): 89-96. doi: 10.1016/j.cclet.2021.06.026