Rational design of Prussian blue analogue-derived manganese-iron oxides-based hybrids as high-performance Li-ion-battery anodes
-
* Corresponding author.
E-mail address: panghuan@yzu.edu.cn (H. Pang).
Citation:
Lin Fan, Xiaotian Guo, Wenting Li, Xinxin Hang, Huan Pang. Rational design of Prussian blue analogue-derived manganese-iron oxides-based hybrids as high-performance Li-ion-battery anodes[J]. Chinese Chemical Letters,
;2023, 34(4): 107447.
doi:
10.1016/j.cclet.2022.04.045
T. Qiu, S. Gao, Z. Liang, et al., Angew. Chem. Int. Ed. 60 (2021) 17314–17336.
doi: 10.1002/anie.202012699
L. Li, W. Liu, H. Dong, et al., Adv. Mater. 33 (2021) 2004959.
doi: 10.1002/adma.202004959
Y. Liu, Y. Zhu, Y. Cui, Nat. Energy 4 (2019) 540–550.
doi: 10.1038/s41560-019-0405-3
F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49 (2020) 1569–1614.
doi: 10.1039/C7CS00863E
X. Cheng, H. Liu, H. Yuan, et al., SusMat 1 (2021) 38–50.
doi: 10.1002/sus2.4
S. Zheng, Q. Li, H. Xue, et al., Natl. Sci. Rev. 7 (2020) 305–314.
doi: 10.1093/nsr/nwz137
X. Song, S. Song, D. Wang, et al., Small Methods 5 (2021) 2001000.
doi: 10.1002/smtd.202001000
S. Fang, D. Bresser, S. Passerini, et al., Adv. Energy Mater. 10 (2020) 1902485.
doi: 10.1002/aenm.201902485
S. Guo, Y. Feng, L. Wang, et al., Small 17 (2021) 2005248.
doi: 10.1002/smll.202005248
R.C.K. Reddy, J. Lin, Y. Chen, et al., Coord. Chem. Rev. 420 (2020) 213434.
doi: 10.1016/j.ccr.2020.213434
C. Zhan, T. Wu, J. Lu, et al., Energy Environ. Sci. 11 (2018) 243–257.
doi: 10.1039/C7EE03122J
J. Lee, D.A. Kitchaev, D.H. Kwon, et al., Nature 556 (2018) 185–190.
doi: 10.1038/s41586-018-0015-4
H. Huang, R. Xu, Y. Feng, et al., Adv. Mater. 32 (2020) 1904320.
doi: 10.1002/adma.201904320
H. Tabassum, A. Mahmood, B. Zhu, et al., Energy Environ. Sci. 12 (2019) 2924–2956.
doi: 10.1039/C9EE00315K
X. Shen, X.Q. Zhang, F. Ding, et al., Energy Mater. Adv. 2021 (2021) 1205324.
H. Tabassum, R. Zou, A. Mahmood, et al., Adv. Mater. 30 (2018) 1705441.
doi: 10.1002/adma.201705441
X. Gao, B. Wang, Y. Zhang, et al., Energy Storage Mater. 16 (2019) 46–55.
doi: 10.1016/j.ensm.2018.04.027
X. Wang, L. Yu, B.Y. Guan, et al., Adv. Mater. 30 (2018) 1801211.
doi: 10.1002/adma.201801211
Y. Zhang, Z. Mu, J. Lai, et al., ACS Nano 13 (2019) 2167–2175.
W. Wang, P. Zhang, S. Li, et al., J. Power Sources 475 (2020) 228683.
doi: 10.1016/j.jpowsour.2020.228683
H. Yang, L.W. Chen, F. He, et al., Nano Lett. 20 (2020) 758–767.
doi: 10.1021/acs.nanolett.9b04829
Y. Yan, S. Li, B. Yuan, et al., ACS Appl. Mater. Interfaces 12 (2020) 8240–8248.
doi: 10.1021/acsami.9b20922
Z. Liang, C. Qu, W. Zhou, et al., Adv. Sci. 6 (2019) 1802005.
doi: 10.1002/advs.201802005
J. Liu, Z. Bao, Y. Cui, et al., Nat. Energy 4 (2019) 180–186.
doi: 10.1038/s41560-019-0338-x
V. Shrivastav, S. Sundriyal, P. Goel, et al., Chem. Rev. 393 (2019) 48–78.
Z. Li, X. Zhang, H. Cheng, et al., Adv. Energy Mater. 10 (2020) 1900486.
doi: 10.1002/aenm.201900486
W. Li, X. Guo, P. Geng, et al., Adv. Mater. 33 (2021) 2105163.
doi: 10.1002/adma.202105163
G. Cai, M. Ding, Q. Wu, et al., Natl. Sci. Rev. 7 (2020) 37–45.
doi: 10.1093/nsr/nwz147
J. Chen, L. Wei, A. Mahmood, et al., Energy Storage Mater. 25 (2020) 585–612.
doi: 10.1016/j.ensm.2019.09.024
L.M. Cao, D. Lu, D.C. Zhong, et al., Coord. Chem. Rev. 407 (2020) 213156.
doi: 10.1016/j.ccr.2019.213156
Y. Lin, L. Zhang, Y. Xiong, et al., Energy Environ. Mater. 3 (2020) 323–345.
doi: 10.1002/eem2.12096
S. Sanati, R. Abazari, J. Albero, et al., Angew. Chem. Int. Ed. 60 (2021) 11048–11067.
doi: 10.1002/anie.202010093
L. Chen, H.F. Wang, C. Li, et al., Chem. Sci. 11 (2020) 5369–5403.
doi: 10.1039/D0SC01432J
M. Yang, L. Jiao, H. Dong, et al., Sci. Bull. 66 (2021) 257–264.
doi: 10.1016/j.scib.2020.06.036
P. Geng, L. Wang, M. Du, et al., Adv. Mater. 34 (2022) 2107836.
doi: 10.1002/adma.202107836
Q. Liu, Z. Hu, M. Chen, et al., Adv. Funct. Mater. 30 (2020) 1909530.
doi: 10.1002/adfm.201909530
H. Tang, M. Zheng, Q. Hu, et al., J. Mater. Chem. A 6 (2018) 13999–14024.
doi: 10.1039/C8TA03644F
C. Dong, W. Dong, X. Lin, et al., EnergyChem 2 (2020) 100045.
doi: 10.1016/j.enchem.2020.100045
L. Liu, Z. Hu, L. Sun, et al., RSC Adv. 5 (2015) 36575–36581.
doi: 10.1039/C5RA02781K
L. Hu, P. Zhang, H. Zhong, et al., Chem. Eur. J. 18 (2012) 15049–15056.
doi: 10.1002/chem.201200412
F. Zheng, D. Zhu, X. Shi, et al., J. Mater. Chem. A 3 (2015) 2815–2824.
doi: 10.1039/C4TA06150K
B. Li, K. Igawa, J. Chai, et al., Energy Storage Mater. 25 (2020) 137–144.
doi: 10.1016/j.ensm.2019.10.021
W. Yang, X. Li, Y. Li, et al., Adv. Mater. 31 (2018) 1804740.
doi: 10.1002/adma.201804740
P. Wang, G. Zhang, M.Y. Li, et al., Chem. Eng. J. 375 (2019) 122020.
doi: 10.1016/j.cej.2019.122020
J. Vazquez-Samperio, G. Ramírez-Campos, M. Á. León-Luna, et al., Electrochim. Acta 380 (2021) 138218.
doi: 10.1016/j.electacta.2021.138218
G. Li, W. Chen, H. Zhang, et al., Adv. Energy Mater. 10 (2020) 1902085.
doi: 10.1002/aenm.201902085
H. Qin, J. Yin, Q. Li, et al., J. Environ. Chem. Eng. 9 (2021) 106739.
doi: 10.1016/j.jece.2021.106739
J.Y. Xie, Z.Z. Liu, J. Li, et al., J. Energy Chem. 48 (2020) 328–333.
doi: 10.1016/j.jechem.2020.02.031
Y. Jiang, D. Ba, Y. Li, et al., Adv. Sci. 7 (2020) 1902795.
doi: 10.1002/advs.201902795
M. Zhang, J. Zhou, J. Yu, et al., Chem. Eng. J. 387 (2020) 123170.
doi: 10.1016/j.cej.2019.123170
Y. Shen, S.G. Guo, F. Du, et al., Nanoscale 11 (2019) 11765–11773.
doi: 10.1039/C9NR01804B
D. Yao, F. Wang, W. Lei, et al., Sci. China Mater. 63 (2020) 2013–2027.
doi: 10.1007/s40843-020-1357-9
W. Yang, J. Zhou, S. Wang, et al., Energy Environ. Sci. 12 (2019) 1605–1612.
doi: 10.1039/C9EE00536F
Y. Zhu, A. Hu, Q. Tang, et al., ACS Appl. Mater. Interfaces 10 (2018) 8955–8964.
doi: 10.1021/acsami.7b19379
J. Guo, H. Pei, Y. Dou, et al., Adv. Funct. Mater. 31 (2021) 2010499.
doi: 10.1002/adfm.202010499
J. Hou, H. Zhang, J. Lin, et al., J. Mater. Chem. A 7 (2019) 23733–23738.
doi: 10.1039/C9TA02279A
L. Ku, Y. Cai, Y. Ma, et al., Chem. Eng. J. 370 (2019) 499–507.
doi: 10.1016/j.cej.2019.03.247
X. Guo, W. Li, Q. Zhang, et al., Chem. Eng. J. 432 (2021) 134413.
L. Fan, Y. Ru, H. Xue, et al., Adv. Sustain. Syst. 4 (2020) 2000178.
doi: 10.1002/adsu.202000178
M. Yousaf, Y. Wang, Y. Chen, et al., Adv. Energy Mater. 9 (2019) 1900567.
doi: 10.1002/aenm.201900567
Z. Sun, Z. Li, L. Gao, L. Niu, et al., Adv. Energy Mater. 9 (2019) 1802946.
doi: 10.1002/aenm.201802946
V.A. Nikitina, S.Y. Vassiliev, K.J. Stevenson, Adv. Energy Mater. 10 (2020) 1903933.
doi: 10.1002/aenm.201903933
L. Fan, X. Guo, X. Hang, H. Pang, J. Colloid Interface Sci. 607 (2022) 1898–1907.
doi: 10.1016/j.jcis.2021.10.025
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Long Li , Kang Yang , Chenpeng Xi , Mengchao Li , Borong Li , Gui Xu , Yuanbin Xiao , Xiancai Cui , Zhiliang Liu , Lingyun Li , Yan Yu , Chengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Xin Chen , Meng Zhao , Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141