Integrating aryl chlorides into nickel-catalyzed 1,1-difunctionalization of alkenes
-
* Corresponding author.
E-mail address: yinguoyin@whu.edu.cn (G. Yin).
Citation:
Caocao Sun, Guoyin Yin. Integrating aryl chlorides into nickel-catalyzed 1,1-difunctionalization of alkenes[J]. Chinese Chemical Letters,
;2022, 33(12): 5096-5100.
doi:
10.1016/j.cclet.2022.04.026
D. Kolb, K.E. Kolb, J. Chem. Educ. 56 (1979) 465–469.
doi: 10.1021/ed056p465
R.P. Badoni, S.D. Bhagat, G.C. Joshi, Fuel 71 (1992) 483–491.
doi: 10.1016/0016-2361(92)90144-D
L.M. Wickham, R. Giri, Acc. Chem. Res. 54 (2021) 3415–3437.
doi: 10.1021/acs.accounts.1c00329
Y.C. Luo, C. Xu, X. Zhang, Chin. J. Chem. 38 (2020) 1371–1394.
doi: 10.1002/cjoc.202000224
Z. Liu, Y. Gao, T. Zeng, K.M. Engle, Isr. J. Chem. 60 (2020) 219–229.
doi: 10.1002/ijch.201900087
Z.L. Li, G.C. Fang, Q.S. Gu, X.Y. Liu, Chem. Soc. Rev. 49 (2020) 32–48.
doi: 10.1039/C9CS00681H
J. Derosa, O. Apolinar, T. Kang, V.T. Tran, K.M. Engle, Chem. Sci. 11 (2020) 4287–4296.
doi: 10.1039/C9SC06006E
X. Fu, W. Zhao, Chin. J. Org. Chem. 39 (2019) 625–647.
doi: 10.6023/cjoc201808031
J.S. Zhang, L. Liu, T. Chen, L.B. Han, Chem. Asian J. 13 (2018) 2277–2291.
doi: 10.1002/asia.201800647
A.M. Bergmann, S.K. Dorn, K.B. Smith, K.M. Logan, M.K. Brown, Angew. Chem. Int. Ed. 58 (2019) 1719–1723.
doi: 10.1002/anie.201812533
W. Shu, A. Garcia-Dominguez, M.T. Quiros, et al., J. Am. Chem. Soc. 141 (2019) 13812–13821.
doi: 10.1021/jacs.9b02973
L. Guo, M. Yuan, Y. Zhang, et al., J. Am. Chem. Soc. 142 (2020) 20390–20399.
doi: 10.1021/jacs.0c08823
H. Lee, S. Lee, J. Yun, ACS Catal. 10 (2020) 2069–2073.
doi: 10.1021/acscatal.9b05213
B.J. McCarty, W. Tang, Green Synth. Catal. 2 (2021) 1–3.
doi: 10.1016/j.gresc.2020.12.004
Z. Shi, L. Xi, Chin. J. Org. Chem. 41 (2021) 1264–1266.
doi: 10.6023/cjoc202100021
R.M. Oechsner, J.P. Wagner, I. Fleischer, ACS Catal. 12 (2022) 2233–2243.
doi: 10.1021/acscatal.1c04895
E.K. Elias, S.M. Rehbein, S.R. Neufeldt, Chem. Sci. 13 (2022) 1618–1628.
doi: 10.1039/D1SC05862B
I. Nohira, N. Chatani, ACS Catal. 11 (2021) 4644–4649.
doi: 10.1021/acscatal.1c01102
B. Mirabi, A.D. Marchese, M. Lautens, ACS Catal. 11 (2021) 12785–12793.
doi: 10.1021/acscatal.1c02307
G. Li, L. Yang, J.J. Liu, W. Zhang, D. Xue, et al., Angew. Chem. Int. Ed. 60 (2021) 5230–5234.
doi: 10.1002/anie.202012877
K. Kang, N.L. Loud, T.A. DiBenedetto, D.J. Weix, J. Am. Chem. Soc. 143 (2021) 21484–21491.
doi: 10.1021/jacs.1c10907
Z.W. Shen, D.D. Meng, S. Imran, C.H. Yan, H.M. Sun, Organometallics 39 (2020) 3540–3545.
doi: 10.1021/acs.organomet.0c00515
H.A. Sakai, W. Liu, C.C. Le, D.W.C. MacMillan, J. Am. Chem. Soc. 142 (2020) 11691–11697.
doi: 10.1021/jacs.0c04812
R.T. McGuire, C.M. Simon, A.A. Yadav, M.J. Ferguson, M. Stradiotto, Angew. Chem. Int. Ed. 59 (2020) 8952–8956.
doi: 10.1002/anie.202002392
S. Kim, M.J. Goldfogel, M.M. Gilbert, D.J. Weix, J. Am. Chem. Soc. 142 (2020) 9902–9907.
doi: 10.1021/jacs.0c02673
W.A. Golding, H.L. Schmitt, R.J. Phipps, J. Am. Chem. Soc. 142 (2020) 21891–21898.
doi: 10.1021/jacs.0c11056
E.D. Entz, J.E.A. Russell, L.V. Hooker, S.R. Neufeldt, J. Am. Chem. Soc. 142 (2020) 15454–15463.
doi: 10.1021/jacs.0c06995
L. Huang, L.K.G. Ackerman, K. Kang, A.M. Parsons, D.J. Weix, J. Am. Chem. Soc. 141 (2019) 10978–10983.
doi: 10.1021/jacs.9b05461
M.A. Iqbal, L. Lu, H. Mehmood, R. Hua, ACS Omega 6 (2021) 15981–15987.
doi: 10.1021/acsomega.1c01736
N.G.W. Cowper, C.P. Chernowsky, O.P. Williams, Z.K. Wickens, J. Am. Chem. Soc. 142 (2020) 2093–2099.
doi: 10.1021/jacs.9b12328
H. Zeng, Q. Dou, C.J. Li, Org. Lett. 21 (2019) 1301–1305.
doi: 10.1021/acs.orglett.8b04081
W. Liu, J. Li, P. Querard, C.J. Li, J. Am. Chem. Soc. 141 (2019) 6755–6764.
doi: 10.1021/jacs.9b02684
D.S. Lee, C.S. Kim, N. Iqbal, et al., Org. Lett. 21 (2019) 9950–9953.
doi: 10.1021/acs.orglett.9b03877
C.L. Sun, Z.J. Shi, Chem. Rev. 114 (2014) 9219–9280.
doi: 10.1021/cr400274j
Z.H. Cui, Z.H. Meng, Y.Q. Mi, et al., Chin. Chem. Lett. 23 (2012) 137–140.
doi: 10.1016/j.cclet.2011.11.009
V.V. Grushin, H. Alper, Chem. Rev. 94 (1994) 1047–1062.
doi: 10.1021/cr00028a008
W. Wang, C. Ding, G. Yin, Nat. Catal. 3 (2020) 951–958.
doi: 10.1038/s41929-020-00523-8
C. Ding, Y. Ren, C. Sun, J. Long, G. Yin, J. Am. Chem. Soc. 143 (2021) 20027–20034.
doi: 10.1021/jacs.1c09214
W. Wang, C. Ding, Y. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 4612–4616.
doi: 10.1002/anie.201814572
Y. Li, H. Pang, D. Wu, et al., Angew. Chem. Int. Ed. 58 (2019) 8872–8876.
doi: 10.1002/anie.201903890
Y. Li, H. Wei, D. Wu, et al., ACS Catal. 10 (2020) 4888–4894.
doi: 10.1021/acscatal.0c00898
H. Pang, D. Wu, H. Cong, G. Yin, ACS Catal. 9 (2019) 8555–8560.
doi: 10.1021/acscatal.9b02747
B. Zhao, Y. Li, H. Li, et al., Sci. Bull. 66 (2021) 570–577.
doi: 10.1016/j.scib.2020.10.001
Z. Li, D. Wu, C. Ding, G. Yin, CCS Chem. 3 (2021) 576–582.
doi: 10.31635/ccschem.020.202000183
M. Belal, Z. Li, G. Yin, et al., Sci. China Chem. 65 (2021) 514–520.
doi: 10.1007/s11426-021-1172-x
C.J. Burrows, J.B. Harper, W. Sander, D.J. Tantillo, J. Org. Chem. 87 (2022) 1599–1601.
doi: 10.1021/acs.joc.1c03148
C. Najera, I.P. Beletskaya, M. Yus, Chem. Soc. Rev. 48 (2019) 4515–4618.
doi: 10.1039/C8CS00872H
J.L. Cook, C.A. Hunter, C.M. Low, A. Perez-Velasco, J.G. Vinter, Angew. Chem. Int. Ed. 46 (2007) 3706–3709.
doi: 10.1002/anie.200604966
C. Reichardt, Pure Appl. Chem. 54 (1982) 1867–1884.
doi: 10.1351/pac198254101867
H.Y. Diao, Z.J. Shi, F. Liu, Synlett 32 (2021) 1494–1512.
doi: 10.1055/a-1349-3543
S.R. Neufeldt, J.E.A. Russell, Synlett 32 (2021) 1484–1491.
doi: 10.1055/a-1503-6330
B. Xiong, Y. Li, Y. Wei, S. Kramer, Z. Lian, Org. Lett. 22 (2020) 6334–6338.
doi: 10.1021/acs.orglett.0c02165
Z. Zhu, Y. Gong, W. Tong, W. Xue, H. Gong, Org. Lett. 23 (2021) 2158–2163.
doi: 10.1021/acs.orglett.1c00313
H. Lee, Y. Lee, S.H. Cho, Org. Lett. 21 (2019) 5912–5916.
doi: 10.1021/acs.orglett.9b02050
K. Kang, L.B. Huang, D.J. Weix, J. Am. Chem. Soc. 142 (2020) 10634–10640.
doi: 10.1021/jacs.0c04670
J. Cornella, C. Zarate, R. Martin, Chem. Soc. Rev. 43 (2014) 8081–8097.
doi: 10.1039/C4CS00206G
M. Cao, H. Xie, Chin. Chem. Lett. 32 (2021) 319–327.
doi: 10.1016/j.cclet.2020.04.005
Y. Li, D. Wu, G. Yin, Angew. Chem. Int. Ed. 59 (2020) 7990–8003 59.
doi: 10.1002/anie.201913382
R.K. Dhungana, R.R. Sapkota, D. Niroula, R. Giri, Chem. Sci. 11 (2020) 9757–9774.
doi: 10.1039/D0SC03634J
S. Yang, Y.H. Chen, Z.H. Ding, Org. Biomol. Chem. 18 (2020) 6983–7001.
doi: 10.1039/D0OB01323D
D.K. Wang, L. Li, Q. Xu, et al., Org. Chem. Front. 8 (2021) 7037–7049.
doi: 10.1039/D1QO01002F
X.X. Wang, X. Lu, Y. Li, J.W. Wang, Y. Fu, Sci. China Chem. 63 (2020) 1586–1600.
doi: 10.1007/s11426-020-9838-x
L. Chu, S. Zhu, H.Y. Tu, F.L. Qing, Synthesis 52 (2020) 1346–1356.
doi: 10.1055/s-0039-1690842
X.X. Qi, T.N. Diao, ACS Catal. 10 (2020) 8542–8556.
doi: 10.1021/acscatal.0c02115
Dan Xu , Zhi Hua Liu , Wei Jun Tang , Jun Mo , Li Jin Xu . Palladium-catalyzed highly regioselective Heck reaction of aryl nonaflates with electron-rich olefins. Chinese Chemical Letters, 2008, 19(9): 1017-1020. doi: 10.1016/j.cclet.2008.06.004
Wu Zhenghan , Si Tengda , Xu Guangqing , Xu Bin , Tang Wenjun . Ligand-free nickel-catalyzed Kumada couplings of aryl bromides with tert-butyl Grignard reagents. Chinese Chemical Letters, 2019, 30(3): 597-600. doi: 10.1016/j.cclet.2018.12.027
Chong-Qing Wang , Xin Chen , Jun-Hang Jiang , Hui Tang , Kong-Kai Zhu , You-Jun Zhou , Can-Hui Zheng , Ju Zhu . Acidic rearrangement of benzyl group in flavone benzyl ethers and its regioselectivity. Chinese Chemical Letters, 2015, 26(6): 793-796. doi: 10.1016/j.cclet.2015.03.035
Yang Liu , Zhong-Zhi Yang , Dong-Xia Zhao . Rationalization of regioselectivity of electrophilic substitution reaction for cyclic compounds in terms of Dpb values. Chinese Chemical Letters, 2015, 26(5): 553-556. doi: 10.1016/j.cclet.2014.12.013
Yuan-Ye Jiang , Hai-Zhu Yu , Jing Shi . Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes. Chinese Chemical Letters, 2015, 26(1): 58-62. doi: 10.1016/j.cclet.2014.10.021
Xing Li , Zhi-Qin Sun , Hong-Hong Chang , Wen-Long Wei . Highly efficient regioselective ring openings of N-tosylaziridines to haloamines using ferric (Ⅲ) halides. Chinese Chemical Letters, 2014, 25(8): 1174-1178. doi: 10.1016/j.cclet.2014.03.033
Jian-Jun Li , Xing-Xing Gui . L-ProT catalyzed highly regioselective N-alkoxyalkylation of purine rings with vinyl ethers. Chinese Chemical Letters, 2014, 25(10): 1341-1345. doi: 10.1016/j.cclet.2014.04.023
Yong Mei Xiao , Pu Mao , Zhen Zhao , Liang Ru Yang , Xian Fu Lin . Regioselective enzymatic acylation of troxerutin in nonaqueous medium. Chinese Chemical Letters, 2010, 21(1): 59-62. doi: 10.1016/j.cclet.2009.08.017
Ali Reza Kiasat Roya Mirzajani , Haji Shalbaf , Tahereh Tabatabaei . Nuclephilic ring opening of epoxides promoted by multi-site phase-transfer catalyst:An efficient and eco-friendly route to synthesis of b-hydroxy-thiocyanate. Chinese Chemical Letters, 2009, 20(9): 1026-1029. doi: 10.1016/j.cclet.2009.04.015
Xin Yong Liu , Ren Zhang Yan , Nian Gen Chen , Wen Fang Xu . Regioselective synthesis and anti-HIV activity of the novel 2-and 4-substituted pyrazolo[4,5-e] [1,2,4]thiadiazines. Chinese Chemical Letters, 2007, 18(2): 137-140. doi: 10.1016/j.cclet.2006.12.006
Qi WU , Jian Yue FENG , Chen Guo FENG , De Shui LU , Xian Fu LIN . Enzymatic regioselective symthesis of vinthesis of vinyl lactose ester and its chemical polymerization. Chinese Chemical Letters, 2002, 13(5): 416-419.
Wang Yaoyao , Shen Jun , Chen Qun , Wang Liang , He Mingyang . Nickel-catalysed C-O bond reduction of 2, 4, 6-triaryloxy-1, 3, 5-triazines in 2-methyltetrahydrofuran. Chinese Chemical Letters, 2019, 30(2): 409-412. doi: 10.1016/j.cclet.2018.09.009
Shi-Jing Zhai , Dominique Cahard , Fa-Guang Zhang , Jun-An Ma . Metal-free regioselective construction of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates. Chinese Chemical Letters, 2022, 33(2): 863-866. doi: 10.1016/j.cclet.2021.08.007
Peng Gao , Miaolin Ke , Tong Ru , Guanfeng Liang , Fen-Er Chen . Synthesis of rac-α-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst. Chinese Chemical Letters, 2022, 33(2): 830-834. doi: 10.1016/j.cclet.2021.07.068
Yubei Dai , Fang Wang , Shengqing Zhu , Lingling Chu . Selective Ni-catalyzed cross-electrophile coupling of alkynes, fluoroalkyl halides, and vinyl halides. Chinese Chemical Letters, 2022, 33(8): 4074-4078. doi: 10.1016/j.cclet.2021.12.050
Yang Jianlin , Zhang Ming , Wang Peng , Liu Wenjuan , Ruwei Shen . 2-Amino homopropargyl alcohols from the highly regioselective Ag2CO3-catalyzed nucleophilic openings of alkynyl epoxides by amines. Chinese Chemical Letters, 2018, 29(3): 524-526. doi: 10.1016/j.cclet.2017.09.001
Mao Runvze , Sun Lifeng , Wang Yong-Shi , Zhou Min-Min , Xiong De-Cai , Li Qin , Ye Xin-Shan . N-9 Alkylation of purines via light-promoted and metal-free radical relay. Chinese Chemical Letters, 2018, 29(1): 61-64. doi: 10.1016/j.cclet.2017.08.005
Wang Kai-Kai , Du Wei , Zhu Jin , Chen Ying-Chun . Construction of polycyclic spirooxindoles through[3+2] annulations of Morita-Baylis-Hillman carbonates and 3-nitro-7-azaindoles. Chinese Chemical Letters, 2017, 28(3): 512-516. doi: 10.1016/j.cclet.2016.11.003
Han Xiang-Lei , Lin Peng-Peng , Li Qingjiang . Recent advances of allenes in the first-row transition metals catalyzed C—H activation reactions. Chinese Chemical Letters, 2019, 30(8): 1495-1502. doi: 10.1016/j.cclet.2019.04.027