Ultrafine RuO2 nanoparticles/MWCNTs cathodes for rechargeable Na-CO2 batteries with accelerated kinetics of Na2CO3 decomposition
-
* Corresponding author.
E-mail address: zhaoq@nankai.edu.cn (Q. Zhao).
Citation:
Zhenzhen Wang, Yichao Cai, Youxuan Ni, Yong Lu, Liu Lin, Haoxiang Sun, Haixia Li, Zhenhua Yan, Qing Zhao, Jun Chen. Ultrafine RuO2 nanoparticles/MWCNTs cathodes for rechargeable Na-CO2 batteries with accelerated kinetics of Na2CO3 decomposition[J]. Chinese Chemical Letters,
;2023, 34(3): 107405.
doi:
10.1016/j.cclet.2022.04.003
J. Sun, Y. Lu, H. Yang, et al., Research 2018 (2018) 6914626.
X. Mu, H. Pan, P. He, et al., Adv Mater. 32 (2019) e1903790.
Y. Hou, J. Wang, L. Liu, et al., Adv. Funct. Mater. 27 (2017) 1700564.
doi: 10.1002/adfm.201700564
S. Shen, C. Han, B. Wang, et al., Chin. Chem. Lett. 33 (2022) 3721–3725.
doi: 10.1016/j.cclet.2021.10.063
X. Hu, J. Sun, Z. Li, et al., Angew. Chem. Int. Ed. 55 (2016) 6482–6486.
doi: 10.1002/anie.201602504
Y. Lu, Y. Cai, Q. Zhang, et al., Chem. Sci. 10 (2019) 4306–4312.
doi: 10.1039/C8SC05178J
S. Thoka, C.M. Tsai, Z. Tong, et al., ACS Appl. Mater. Interfaces 13 (2021) 480–490.
doi: 10.1021/acsami.0c17373
S. Yang, Y. Qiao, P. He, et al., Energy Environ. Sci. 10 (2017) 972–978.
doi: 10.1039/C6EE03770D
S. Ma, Y. Lu, H. Yao, et al., Chin. Chem. Lett. 33 (2022) 2933–2936.
doi: 10.1016/j.cclet.2021.10.089
Y. Dong, S. Li, S. Hong, L. Wang, B. Wang, Chin. Chem. Lett. 31 (2020) 635–642.
doi: 10.1016/j.cclet.2019.08.021
X. Zhang, C. Wang, H. Li, et al., J. Mater. Chem. A 6 (2018) 2792–2796.
doi: 10.1039/C7TA11015D
Y. Xing, Y. Yang, D. Li, et al., Adv. Mater. 30 (2018) e1803124.
doi: 10.1002/adma.201803124
C. Yang, K. Guo, D. Yuan, et al., J. Am. Chem. Soc. 142 (2020) 6983–6990.
doi: 10.1021/jacs.9b12868
Z. Zhang, Q. Zhang, Y. Chen, et al., Angew. Chem. Int. Ed. 54 (2015) 6550–6553.
doi: 10.1002/anie.201501214
K. Chen, G. Huang, J.L. Ma, et al., Angew. Chem. Int. Ed. 59 (2020) 16661–16667.
doi: 10.1002/anie.202006303
R. Pipes, A. Bhargav, A. Manthiram, Adv. Energy Mater. 9 (2019) 1900453.
doi: 10.1002/aenm.201900453
Z. Zheng, C. Wu, Q. Gu, et al., J. Energy Environ. Mater. 4 (2021) 158–177.
doi: 10.1002/eem2.12139
S. Thoka, Z. Tong, A. Jena, et al., J. Mater. Chem. A 8 (2020) 23974.
doi: 10.1039/D0TA09235E
Z. Zhang, X.G. Wang, X. Zhang, et al., Adv. Sci. 5 (2018) 1700567.
doi: 10.1002/advs.201700567
L. Qie, Y. Lin, J.W. Connell, et al., Angew. Chem. Int. Ed. 56 (2017) 6970–6974.
doi: 10.1002/anie.201701826
L. Guo, B. Li, V. Thirumal, et al., Chem. Commun. 55 (2019) 7946–7949.
doi: 10.1039/C9CC02737H
C. Fang, J. Luo, C. Jin, et al., ACS Appl. Mater. Interfaces 10 (2018) 17240–17248.
doi: 10.1021/acsami.8b04034
X. Xing, I. Kimihiko, K. Yoshimi, Electrochim. Acta 261 (2018) 323e329.
S. Ma, Y. Wu, J. Wang, et al., Nano Lett. 15 (2015) 8084–8090.
doi: 10.1021/acs.nanolett.5b03510
Z. Xie, X. Zhang, Z. Zhang, et al., Adv. Mater. 29 (2017) 1605891.
doi: 10.1002/adma.201605891
S. Bie, M. Du, W. He, et al., ACS Appl. Mater. Interfaces 11 (2019) 5146–5151.
doi: 10.1021/acsami.8b20573
Y. Eda, Y. Chihiro, Y. Keisuke, et al., Nano Lett. 13 (2013) 4679–4684.
doi: 10.1021/nl4020952
P. Xua, C. Chen, J. Zhu, et al., J. Electroanal. Chem. 842 (2019) 98–106.
doi: 10.1016/j.jelechem.2019.04.055
Z. Jian, P. Liu, F. Li, et al., Angew. Chem. Int. Ed. 53 (2014) 442–446.
doi: 10.1002/anie.201307976
R. Wang, X. Zhang, Y. Cai, et al., Nano Res. 12 (2019) 2543–2548.
doi: 10.1007/s12274-019-2482-9
S. -. M. Xu, Z. -. C. Ren, X. Liu, et al., Energy Storage Mater. 15 (2018) 291–298.
doi: 10.1016/j.ensm.2018.05.015
M. Chuai, J. Yang, M. Wang, et al., eScience 1 (2021) 178–185.
doi: 10.1016/j.esci.2021.11.002
S. Kundu, Y. Wang, W. Xia, et al., J. Phys. Chem. C 112 (2008) 16869–16878.
doi: 10.1021/jp804413a
X. Gao, J. Chen, X. Sun, et al., ACS Appl. Nano Mater. 3 (2020) 12269–12277.
doi: 10.1021/acsanm.0c02739
A. Huang, Y. Ma, J. Peng, et al., eScience 1 (2021) 141–162.
doi: 10.1016/j.esci.2021.11.006
J.G. Zhou, H.T. Fang, Y.F. Hu, et al., J. Phys. Chem. C 113 (2009) 10747–10750.
doi: 10.1021/jp902871b
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Fanjun Kong , Jing Zhang , Yuting Tang , Chencheng Sun , Chunfu Lin , Tao Zhang , Wangsheng Chu , Li Song , Liang Zhang , Shi Tao . Introducing high-valence element into P2-type layered cathode material for high-rate sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110993-. doi: 10.1016/j.cclet.2025.110993
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Zheng Li , Fangkun Li , Xijun Xu , Jun Zeng , Hangyu Zhang , Lei Xi , Yiwen Wu , Linwei Zhao , Jiahe Chen , Jun Liu , Yanping Huo , Shaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390
Xuan Wang , Peng Sun , Siteng Yuan , Lu Yue , Yufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Runzi Cao , Heng Shao , Xinjie Wang , Jian Wang , Enxiang Shang , Yang Li . Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb2O5/GCN heterojunction catalyst: Performance and mechanism. Chinese Chemical Letters, 2025, 36(7): 111029-. doi: 10.1016/j.cclet.2025.111029
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267
Bin Feng , Tao Long , Ruotong Li , Yuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273
Wenya Li , Yuanqi Yang , Yuqing Yang , Min Liang , Huizi Li , Xi Ke , Liying Liu , Yan Sun , Chunsheng Li , Zhicong Shi , Su Ma . Insights into magnesium and titanium co-doping to stabilize the O3-type NaCrO2 cathode material for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110388-. doi: 10.1016/j.cclet.2024.110388
Peng Wang , Guanyu Zhao , Yicai Pan , Yujing Li , Chenxi Fu , Shipeng Sun , Junqi Gai , Jinping Mu , Xue Bai , Xiaohui Li , Jinfeng Sun , Xiaodong Shi , Rui He . Dual-salt electrolyte strategy enables stable interface reaction and high-performance lithium-ion batteries at low temperature. Chinese Chemical Letters, 2025, 36(11): 111190-. doi: 10.1016/j.cclet.2025.111190
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Mingzhu Jiang , Panqing Wang , Qiheng Chen , Yue Zhang , Qi Wu , Lei Tan , Tianxiang Ning , Lingjun Li , Kangyu Zou . Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chinese Chemical Letters, 2025, 36(6): 110040-. doi: 10.1016/j.cclet.2024.110040
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
Ming Xu , Teng Deng , Chenzhaosha Li , Hongyang Zhao , Juan Wang , Yatao Liu , Jianan Wang , Guodong Feng , Na Li , Shujiang Ding , Kai Xi . Oxygen deficient Eu2O3−δ synchronizes the shielding and catalytic conversion of polysulfides toward high-performance lithium sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110372-. doi: 10.1016/j.cclet.2024.110372
Qi Xia , Ke Yan , Ke Jin , Yang Wu , Yanan Fu , Ding Chen , Huixin Chen , Hongjun Yue . Interface design of tea stem-derived micropore carbon enables high-performance Na-Se batteries. Chinese Chemical Letters, 2025, 36(10): 110406-. doi: 10.1016/j.cclet.2024.110406