Fabricating a novel supramolecular light-activated platform based on internal-driven forces induced by the UV-light
-
* Corresponding author.
E-mail address: weitaibao@126.com (T. Wei).
Citation:
Xiaoni Qi, Weichun Li, Bingbing Shi, Youming Zhang, Hong Yao, Qi Lin, Taibao Wei. Fabricating a novel supramolecular light-activated platform based on internal-driven forces induced by the UV-light[J]. Chinese Chemical Letters,
;2022, 33(12): 5065-5068.
doi:
10.1016/j.cclet.2022.03.081
H.T.Z. Zhu, L.T. Shangguan, B.B. Shi, G.C. Yu, F.H. Huang, Mater. Chem. Front. 2 (2018) 2152–2174.
doi: 10.1039/C8QM00314A
H.T.Z. Zhu, Q. Li, L.L.E. Khalil-Cruz, et al., Sci. China Chem. 64 (2021) 688–700.
doi: 10.1007/s11426-020-9932-9
W. Tuo, Y. Sun, S. Lu, et al., J. Am. Chem. Soc. 142 (2020) 16930–16934.
doi: 10.1021/jacs.0c08697
Y. Acikbas, M. Aksoy, M. Aksoy, et al., J. Incl. Phenom. Macrocycl. Chem. 100 (2021) 39–54.
doi: 10.1007/s10847-021-01059-5
M. Zhang, S. Yin, J. Zhang, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 3044–3049.
doi: 10.1073/pnas.1702510114
C.J. Lu, M.M. Zhang, D.T. Tang, et al., J. Am. Chem. Soc. 140 (2018) 7674–7680.
doi: 10.1021/jacs.8b03781
T. Ogoshi, T. Kakuta, T.A. Yamagishi, Angew. Chem. Int. Ed. 58 (2019) 2197–2206.
doi: 10.1002/anie.201805884
R. Manoni, P. Neviani, P. Franchi, E. Mezzina, M. Lucarini, Eur. J. Org. Chem. 2014 (2014) 147–151.
doi: 10.1002/ejoc.201301153
B. Li, T. He, Y.Q. Fan, et al., Chem. Commun. 55 (2019) 8036–8059.
doi: 10.1039/C9CC02472G
S. Varughese, J. Mater. Chem. C 2 (2014) 3499–3516.
doi: 10.1039/c3tc32414a
H.Y. Dong, C.H. Zhang, Y.S. Zhao, J. Mater. Chem. C 5 (2017) 5600–5609.
doi: 10.1039/C6TC05474A
H.Y. Dong, Y.H. Wei, W. Zhang, et al., J. Am. Chem. Soc. 138 (2016) 1118–1121.
doi: 10.1021/jacs.5b11525
B. Hua, W. Zhou, Z.L. Yang, et al., J. Am. Chem. Soc. 140 (2018) 15651–15654.
doi: 10.1021/jacs.8b11156
B. Hua, L. Shao, Z.H. Zhang, J.Y. Liu, F.H. Huang, J. Am. Chem. Soc. 141 (2019) 15008–15012.
doi: 10.1021/jacs.9b08257
B. Jiang, W. Wang, Y. Zhang, et al., Angew. Chem. Int. Ed. 56 (2017) 14438–14442.
doi: 10.1002/anie.201707209
T. Ogoshi, T. Yamagishi, Y. Nakamoto, Chem. Rev. 116 (2016) 7937–8002.
doi: 10.1021/acs.chemrev.5b00765
H. Zhang, Z. Liu, Y. Zhao, Chem. Soc. Rev. 47 (2018) 5491–5528.
doi: 10.1039/C8CS00037A
N. Song, T. Kakuta, T. Yamagishi, Y.W. Yang, T. Ogoshi, Chem 4 (2018) 2029–2053.
doi: 10.1016/j.chempr.2018.05.015
J. Wu, J. Tian, L.L. Rui, W.A. Zhang, Chem. Commun. 54 (2018) 7629–7632.
doi: 10.1039/C8CC04275F
P.R. Liu, Z.T. Li, B.B. Shi, et al., Chem. Eur. J. 24 (2018) 4264–4267.
doi: 10.1002/chem.201800312
B.B. Shi, Y.Z. Liu, H.T.Z. Zhu, et al., J. Am. Chem. Soc. 141 (2019) 6494–6498.
doi: 10.1021/jacs.9b02281
N. Biot, D. Bonifazi, Chem. Eur. J. 26 (2020) 2904–2913.
doi: 10.1002/chem.201904762
M.Z. Zuo, W.R. Qian, Z.Q. Xu, et al., Small 14 (2018) 1801942.
doi: 10.1002/smll.201801942
S. Li, Y.T. Pan, B. Hua, et al., Angew. Chem. Int. Ed. 59 (2020) 11779–11783.
doi: 10.1002/anie.202000338
G.C. Yu, K.C. Jie, F.H. Huang, Chem. Rev. 115 (2015) 7240–7303.
doi: 10.1021/cr5005315
D.H. Qu, Q.C. Wang, Q.W. Zhang, X. Ma, H. Tian, Chem. Rev. 115 (2015) 7543–7588.
doi: 10.1021/cr5006342
Y. Zhu, L.X. Xu, L.Y. Wang, H. Tang, D.R. Cao, Chem. Commun. 55 (2019) 5910–5913.
doi: 10.1039/C9CC02585E
Q. Lin, X.M. Jiang, X.Q. Ma, et al., Sens. Actuators B Chem. 272 (2018) 139–145.
Y.F. Li, Z. Li, Q. Lin, Y.W. Yang, Nanoscale 12 (2020) 2180–2200.
doi: 10.1039/C9NR09532B
J.F. Chen, G.Y. Meng, Q. Zhu, S.H. Zhang, P.K. Chen, J. Mater. Chem. C 7 (2019) 11747–11751.
doi: 10.1039/C9TC03831K
X.N. Qi, Y.Q. Xie, Y.M. Zhang, et al., Sens. Actuator. B: Chem. 329 (2021)129170.
doi: 10.1016/j.snb.2020.129170
X.N. Qi, Y.X. Che, Y.M. Zhang, et al., Sens. Actuator. B: Chem. 333 (2021)129430.
doi: 10.1016/j.snb.2020.129430
X.N. Qi, Y.Q. Xie, Y.M. Zhang, et al., Sens. Actuator. B: Chem. 344 (2021) 130287.
doi: 10.1016/j.snb.2021.130287
I. Kaur, W. Jia, R.P. Kopreski, et al., J. Am. Chem. Soc. 130 (2008) 16274–16286.
doi: 10.1021/ja804515y
S.R. Wang, M. Arrowsmith, J. Böhnke, et al., Angew. Chem. Int. Ed. 56 (2017) 8009–8013.
doi: 10.1002/anie.201704063
C. Peng, W.T. Liang, J.C. Jia, et al., Chin. Chem. Lett. 32 (2021) 345–348.
doi: 10.1016/j.cclet.2020.03.079
M. Rao, W.H. Wu, C. Yang, Green Synth. Catal. 2 (2021) 131–144.
doi: 10.1016/j.gresc.2021.03.005
Yang Luo , Wei Zhang , Qian Ren , Guo-Rong Chen , Jiang-Lian Ran , Xin Xiao . A multiple-function fluorescent pillar[5]arene: Fe3+/Ag+ detection and light-harvesting system. Chinese Chemical Letters, 2022, 33(12): 5120-5123. doi: 10.1016/j.cclet.2022.04.028
Sheng Yu , Yaqi Wang , Sobhan Chatterjee , Feng Liang , Fei Zhu , Haibing Li . Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. Chinese Chemical Letters, 2021, 32(1): 179-183. doi: 10.1016/j.cclet.2020.11.055
Cai-Li Sun , Jiang-Fei Xu , Yu-Zhe Chen , Li-Ya Niu , Li-Zhu Wua , Chen-Ho Tung , Qing-Zheng Yang . Monofunctionalized pillar[5]arene-based stable [1]pseudorotaxane. Chinese Chemical Letters, 2015, 26(7): 843-846. doi: 10.1016/j.cclet.2015.05.030
Shu Sun , Jian-Bing Shi , Yu-Ping Dong , Chen Lin , Xiao-Yu Hub , Le-Yong Wang . A pillar[5]arene-based side-chain pseudorotaxanes and polypseudorotaxanes as novel fluorescent sensors for the selective detection of halogen ions. Chinese Chemical Letters, 2013, 24(11): 987-992.
Zhang Zibin , Sun Kechang , Li Shijun , Yu Guocan . A pillar[5]arene-based molecular grapple of hexafluorophosphate. Chinese Chemical Letters, 2019, 30(5): 957-960. doi: 10.1016/j.cclet.2019.01.018
Hui Qiang , Tao Chen , Zhuo Wang , Wenqian Li , Yunzhe Guo , Jie Yang , Xueshun Jia , Hui Yang , Weibo Hu , Ke Wen . Pillar[5]arene based conjugated macrocycle polymers with unique photocatalytic selectivity. Chinese Chemical Letters, 2020, 31(12): 3225-3229. doi: 10.1016/j.cclet.2020.04.020
Fang Guo , Junqiang Guo , Zhiqiang Zheng , Tao Xia , Aadil Nabi Chishti , Liwei Lin , Wang Zhang , Guowang Diao . Polymerization of pyrrole induced by pillar[5]arene functionalized graphene for supercapacitor electrode. Chinese Chemical Letters, 2022, 33(11): 4846-4849. doi: 10.1016/j.cclet.2022.01.088
Wang Mengjun , Du Xusheng , Tian Huasheng , Jia Qiong , Deng Rong , Cui Yahan , Wang Chunyu , Meguellati Kamel . Design and synthesis of self-included pillar[5]arene-based bis-[1]rotaxanes. Chinese Chemical Letters, 2019, 30(2): 345-348. doi: 10.1016/j.cclet.2018.10.014
Tianwei Cui , Guoxing Liu , Wenjing Zhang , Xinju Zhu , Juhua Leng , Xin-Qi Hao , Pu Mao , Mao-Ping Song . Metal-organic supramolecular nanoarchitectures by Ru(Ⅱ) bis-(terpyridine)-bridged pillar[5]arene dimers with triphenylamine. Chinese Chemical Letters, 2021, 32(1): 357-361. doi: 10.1016/j.cclet.2020.02.024
Hui Chong , Cuiyun Nie , Lihong Wang , Sicong Wang , Ying Han , Yang Wang , Chengyin Wang , Chaoguo Yan . Construction and investigation of photo-switch property of azobenzene-bridged pillar[5]arene-based [3]rotaxanes. Chinese Chemical Letters, 2021, 32(1): 57-61. doi: 10.1016/j.cclet.2020.11.020
Shuangyan Liu , Taishan Yan , Qiuxia Wu , Zheng Xu , Jie Han . Accelerating the thermal fading rate of photochromic naphthopyrans by pillar[5]arene-based conjugated macrocycle polymer. Chinese Chemical Letters, 2022, 33(1): 239-242. doi: 10.1016/j.cclet.2021.07.023
Qing Wang , Jingwen Fan , Xiaoyan Bian , Hang Yao , Xiaohui Yuan , Ying Han , Chaoguo Yan . A microenvironment sensitive pillar[5]arene-based fluorescent probe for cell imaging and drug delivery. Chinese Chemical Letters, 2022, 33(4): 1979-1982. doi: 10.1016/j.cclet.2021.10.040
Kaiya Wang , Minzan Zuo , Tao Zhang , Huilan Yue , Xiao-Yu Hu . Pillar[5]arene–modified peptide-guanidiniocarbonylpyrrol amphiphiles with gene transfection properties. Chinese Chemical Letters, 2023, 34(5): 107848-1-107848-4. doi: 10.1016/j.cclet.2022.107848
Ye Junmei , Zhang Runmiao , Yang Wenjuan , Han Ying , Guo Hao , Xie Ju , Yan Chaoguo , Yao Yong . Pillar[5]arene-based[3]rotaxanes: Convenient construction via multicomponent reaction and pH responsive self-assembly in water. Chinese Chemical Letters, 2020, 31(6): 1550-1553. doi: 10.1016/j.cclet.2019.11.041
Yufeng Cao , Yanmei Chen , Zhecheng Zhang , Jin Wang , Xiaolei Yuan , Qin Zhao , Yue Ding , Yong Yao . CO2 and photo-controlled reversible conversion of supramolecular assemblies based on water soluble pillar[5]arene and coumarin-containing guest. Chinese Chemical Letters, 2021, 32(1): 349-352. doi: 10.1016/j.cclet.2020.03.058
Yan Cai , Zhecheng Zhang , Yue Ding , Lanping Hu , Jin Wang , Tingting Chen , Yong Yao . Recent development of pillar[n]arene-based amphiphiles. Chinese Chemical Letters, 2021, 32(4): 1267-1279. doi: 10.1016/j.cclet.2020.10.036
Lintao Wu , Chun Han , Xiaobi Jing , Yong Yao . Rim-differentiated pillar[5]arenes. Chinese Chemical Letters, 2021, 32(11): 3322-3330. doi: 10.1016/j.cclet.2021.04.046
Wajahat Ali , Weitao Gong , Mehdi Hassan , Weidong Qu , Lu Liu , Guiling Ning . Guest induced morphology transitions of star shaped pillar[5]arene trimer via endo host-guest and "exo-wall" electron-transfer interactions. Chinese Chemical Letters, 2021, 32(1): 371-374. doi: 10.1016/j.cclet.2020.03.044
Jin Wang , Moupan Cen , Jian Wang , Di Wang , Yue Ding , Guohua Zhu , Bing Lu , Xiaolei Yuan , Yang Wang , Yong Yao . Water-soluble pillar[4]arene[1]quinone: Synthesis, host-guest property and application in the fluorescence turn-on sensing of ethylenediamine in aqueous solution, organic solvent and air. Chinese Chemical Letters, 2022, 33(3): 1475-1478. doi: 10.1016/j.cclet.2021.08.044
Han Ying , Nie Cui-Yun , Jiang Shuo , Sun Jing , Yan Chao-Guo . Synthesis and characterization of bis-[1]rotaxanes via salen-bridged bis-pillar[5]arenes. Chinese Chemical Letters, 2020, 31(3): 725-728. doi: 10.1016/j.cclet.2019.09.014