Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes
-
* Corresponding author.
E-mail address: shuxingzh@lzu.edu.cn (X.-Z. Shu).
Citation:
Liangliang Qi, Xiaobo Pang, Kai Yin, Qiu-Quan Pan, Xiao-Xue Wei, Xing-Zhong Shu. Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes[J]. Chinese Chemical Letters,
;2022, 33(12): 5061-5064.
doi:
10.1016/j.cclet.2022.03.070
T. Hiyama, Organosilicon compounds in cross-coupling Reactions tamejiro hiyama, in: F. Diederich, P.J. Stang (Eds.), Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, New York, 1998, pp. 421–454.
T. Hiyama, M. Oestreich, Organosilicon Chemistry: Novel Approaches and Reactions, Wiley-VCH, Weinheim, 2019.
B. Boutevin, F. Guida-Pietrasanta, A. Ratsimihety, Silicon containing polymers, in: R.G. Jones, W. Ando, J. Chojnowski (Eds.), The Science and Technology of Their Synthesis and Application, Springer, Dordrecht, 2000, pp. 79–112.
R. Tacke, S. Dorrich, Drug design based on the carbon/silicon switch strategy, in: J. Schwarz (Ed.), Atypical Elements in Drug Design, Springer, Cham, 2016, pp. 29–59.
B.A. Keay, I. Fleming, Arylsilanes Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, 4, Georg Thieme Verlag, 2002, pp. 685–712.
B. Marciniec, Hydrosilylation: A Comprehensive Review on Recent Advances, Springer, Dordrecht, 2008.
D. Troegel, J. Stohrer, Coord. Chem. Rev. 255 (2011) 1440–1459.
doi: 10.1016/j.ccr.2010.12.025
X. Du, Z. Huang, ACS Catal. 7 (2017) 1227–1243.
doi: 10.1021/acscatal.6b02990
J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 36 (2018) 1075–1109.
doi: 10.1002/cjoc.201800314
K. Li, M. Nie, W. Tang, Green Synth. Catal. 1 (2020) 171–174.
doi: 10.1016/j.gresc.2020.08.003
S. Mallick, E.U. Wurthwein, A. Studer, Org. Lett. 22 (2020) 6568–6572.
doi: 10.1021/acs.orglett.0c02337
X. Du, Y. Zhang, D. Peng, Z. Huang, Angew. Chem. Int. Ed. 55 (2016) 6671–6675.
doi: 10.1002/anie.201601197
M.W. Gribble, M.T. Pirnot, J.S. Bandar, R.Y. Liu, S.L. Buchwald, J. Am. Chem. Soc. 139 (2017) 2192–2195.
doi: 10.1021/jacs.6b13029
C. Wang, W.J. Teo, S. Ge, ACS Catal. 7 (2017) 855–863.
doi: 10.1021/acscatal.6b02518
B. Cheng, P. Lu, H. Zhang, X. Cheng, Z. Lu, J. Am. Chem. Soc. 139 (2017) 9439–9442.
doi: 10.1021/jacs.7b04137
M.Y. Hu, Q. He, S.J. Fan, et al., Nat. Commun. 9 (2018) 221–231.
doi: 10.1038/s41467-017-02472-6
S. Bahr, W. Xue, M. Oestreich, ACS Catal. 9 (2019) 16–24.
doi: 10.1021/acscatal.8b04230
K. Murakami, K. Hirano, H. Yorimitsu, K. Oshima, Angew. Chem. Int. Ed. 47 (2008) 5833–5835.
doi: 10.1002/anie.200801949
M. Tobisu, Y. Kita, N. Chatani, J. Am. Chem. Soc. 128 (2006) 8152–8153.
doi: 10.1021/ja062745w
V. Murugesan, V. Balakrishnan, R. Rasappan, J. Catal. 377 (2019) 293–298.
doi: 10.1016/j.jcat.2019.07.026
Y.Y. Kong, Z.X. Wang, Adv. Synth. Catal. 361 (2019) 5440–5448.
doi: 10.1002/adsc.201900949
K.M. Korch, D.A. Watson, Chem. Rev. 119 (2019) 8192–8228.
doi: 10.1021/acs.chemrev.8b00628
J. Terao, K. Torii, K. Saito, et al., Angew. Chem. Int. Ed. 37 (1998) 2653–2656.
doi: 10.1002/(SICI)1521-3773(19981016)37:19<2653::AID-ANIE2653>3.0.CO;2-3
J.R. McAtee, S.E.S. Martin, D.T. Ahneman, K.A. Johnson, D.A. Watson, Angew. Chem. Int. Ed. 51 (2012) 3663–3667.
doi: 10.1002/anie.201200060
S.E.S. Martin, D.A. Watson, J. Am. Chem. Soc. 135 (2013) 13330–13333.
doi: 10.1021/ja407748z
C.K. Chu, Y. Liang, G.C. Fu, J. Am. Chem. Soc. 138 (2016) 6404–6407.
doi: 10.1021/jacs.6b03465
W. Xue, Z.W. Qu, S. Grimme, M. Oestreich, J. Am. Chem. Soc. 138 (2016) 14222–14225.
doi: 10.1021/jacs.6b09596
W. Xue, M. Oestreich, Angew. Chem. Int. Ed. 56 (2017) 11649–11652.
doi: 10.1002/anie.201706611
J. Scharfbier, H. Hazrati, E. Irran, M. Oestreich, Org. Lett. 19 (2017) 6562–6565.
doi: 10.1021/acs.orglett.7b03279
W. Xue, R. Shishido, M. Oestreich, Angew. Chem. Int. Ed. 57 (2018) 12141–12145.
doi: 10.1002/anie.201807640
J. Scharfbier, B.M. Gross, M. Oestreich, Angew. Chem. Int. Ed. 59 (2020) 1577–1580.
doi: 10.1002/anie.201912490
S. Wang, M. Sun, H. Zhang, et al., CCS Chem. 3 (2021) 2164–2173.
doi: 10.31635/ccschem.020.202000447
V. Balakrishnan, V. Murugesan, B. Chindan, R. Rasappan, Org. Lett. 23 (2021) 1333–1338.
doi: 10.1021/acs.orglett.0c04316
A.P. Cinderella, B. Vulovic, D.A. Watson, J. Am. Chem. Soc. 139 (2017) 7741–7744.
doi: 10.1021/jacs.7b04364
B. Vulovic, A.P. Cinderella, D.A. Watson, ACS Catal. 7 (2017) 8113–8117.
doi: 10.1021/acscatal.7b03465
C.E.I. Knappke, S. Grupe, D. Gärtner, et al., Chem. Eur. J. 20 (2014) 6828–6942.
doi: 10.1002/chem.201402302
T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 20 (2014) 8242–8258.
doi: 10.1002/chem.201402509
E.L. Lucas, E.R. Jarvo, Nat. Rev. Chem. 1 (2017) 0065–0071.
doi: 10.1038/s41570-017-0065
M.J. Goldfogel, L. Huang, D.J. Weix, Cross electrophile coupling: principles and new reactions, in: S. Ogoshi (Ed.), Nickel Catalysis in Synthesis: Methods and Reactions, Wiley-VCH, Weinheim, 2020, pp. 183–222.
J. Liu, Y. Ye, J.L. Sessler, H. Gong, ACC Chem. Res. 53 (2020) 1833–1845.
doi: 10.1021/acs.accounts.0c00291
K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.
doi: 10.1021/acscatal.0c01842
X. Pang, X. Peng, X.Z. Shu, Synthesis (Mass) 52 (2020) 3751–3763.
doi: 10.1055/s-0040-1707342
P. Zheng, P. Zhou, D. Wang, et al., Nat. Commun. 12 (2021) 1646.
doi: 10.1038/s41467-021-21947-1
D. Wang, T. Xu, ACS Catal. 11 (2021) 12469–12475.
doi: 10.1021/acscatal.1c03265
X.G. Jia, P. Guo, J. Duan, X.Z. Shu, Chem. Sci. 9 (2018) 640–645.
doi: 10.1039/C7SC03140H
X.B. Yan, C.L. Li, W.J. Jin, P. Guo, X.Z. Shu, Chem. Sci. 9 (2018) 4529–4534.
doi: 10.1039/C8SC00609A
R.D. He, C.L. Li, Q.Q. Pan, et al., J. Am. Chem. Soc. 141 (2019) 12481–12486.
doi: 10.1021/jacs.9b05224
H. Xie, J. Guo, Y.Q. Wang, et al., J. Am. Chem. Soc. 142 (2020) 16787–16794.
doi: 10.1021/jacs.0c07492
P. Guo, K. Wang, W.J. Jin, et al., J. Am. Chem. Soc. 143 (2021) 513–523.
doi: 10.1021/jacs.0c12462
P.F. Su, K. Wang, X. Peng, et al., Angew. Chem. Int. Ed. 60 (2021) 26571–26576.
doi: 10.1002/anie.202112876
J. Duan, K. Wang, G.L. Xu, et al., Angew. Chem. Int. Ed. 59 (2020) 23083–23088.
doi: 10.1002/anie.202010737
L. Zhang, M. Oestreich, Angew. Chem. Int. Ed. 60 (2021) 18587–1859.
doi: 10.1002/anie.202107492
M. Xing, H. Cui, C. Zhang, Org. Lett. 23 (2021) 7645–7649.
doi: 10.1021/acs.orglett.1c02887
J. Duan, Y. Wang, L. Qi, et al., Org. Lett. 23 (2021) 7855–7859.
doi: 10.1021/acs.orglett.1c02874
H. Yamashita, M. Tanaka, M. Goto, Organometallics 16 (1997) 4696–4707.
doi: 10.1021/om970214y
B. Vulovic, A.P. Cinderella, D.A. Watson, ACS Catal. 7 (2017) 8113–8117.
doi: 10.1021/acscatal.7b03465
K. Matsumoto, J. Huang, Y. Naganawa, et al., Org. Lett. 20 (2018) 2481–2484.
doi: 10.1021/acs.orglett.8b00847
D.J. Ager, The peterson olefination reaction, in: L.P. Paquette (Ed.), Organic Reactions, Wiley, 1990, pp. 1–219.
P.S. Jones, S.V. Ley, N.S. Simpkins, A.J. Whittle, Tetrahedron 42 (1986) 6519–6534.
doi: 10.1016/S0040-4020(01)88114-X
M.B. Anderson, P.L. Fuchs, J. Org. Chem. 55 (1990) 337–342.
doi: 10.1021/jo00288a058
D.J. Ager, J. Chem. Soc. Chem. Commun. (1984) 486–488.
D. Craig, S.V. Ley, N.S. Simpkins, G.H. Whitham, M.J. Prior, J. Chem. Soc. Perkin Trans. 1 (1985) 1949–1952.
E.E. Aboujaoude, S. Liétjé, N. Collignon, M.P. Teulade, P.A. Savignac, Synthesis 11 (1986) 934–937.
A.G. Shipov, Y.I. Baukov, Zh. Obshch. Khim. 54 (1984) 1842.
H. Keipour, V. Carreras, T. Ollevier, Org. Biomol. Chem. 15 (2017) 5441–5456.
doi: 10.1039/C7OB00807D
W. Ando, A. Sekiguchi, T. Hagiwara, et al., J. Am. Chem. Soc. 101 (1979) 6393–6398.
doi: 10.1021/ja00515a038
S.B.J. Kan, R.D. Lewis, K. Chen, F.H. Arnold, Science 354 (2016) 1048–1051.
doi: 10.1126/science.aah6219
D. Chen, D.X. Zhu, M.H. Xu, J. Am. Chem. Soc. 138 (2016) 1498–1501.
doi: 10.1021/jacs.5b12960
W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029–3070.
doi: 10.1021/cr020049i
P.W.N.M. van Leeuwen, P.C.J. Kamer, C. Claver, O. Pamies, M. Dièguez, Chem. Rev. 111 (2011) 2077–2118.
doi: 10.1021/cr1002497
M. Mellah, A. Voituriez, E. Schulz, Chem. Rev. 107 (2007) 5133–5209.
doi: 10.1021/cr068440h
C. Li, Catal. Rev. 46 (2004) 419–492.
doi: 10.1081/CR-200036734
L. Barfacker, D.E. Tom, P. Eilbraeht, Tetrahedron Lett. 40 (1999) 4031–4034.
doi: 10.1016/S0040-4039(99)00678-4
P.P. Matloka, K.B. Wagener, J. Mol. Catal. A 257 (2006) 89–98.
doi: 10.1016/j.molcata.2006.06.006
J.W. Park, C.H. Jun, J. Am. Chem. Soc. 132 (2010) 7268–7269.
doi: 10.1021/ja102741k
M.I. Antczak, J.L. Montchamp, J. Org. Chem. 74 (2009) 3758–3766.
doi: 10.1021/jo900300c
K. Chang, B. Ku, D.Y. Oh, Syn. Commun. 19 (1989) 1891–1898.
doi: 10.1080/00397918908052580
M. Linnert, C. Bruhn, C. Wagner, D. Steinborn, J. Organomet. Chem. 691 (2006) 2358–2367.
doi: 10.1016/j.jorganchem.2005.12.048
Lili Tang , Kejie Du , Bing Yu , Liangnian He . Oxidation of aromatic sulfides with molecular oxygen: Controllable synthesis of sulfoxides or sulfones. Chinese Chemical Letters, 2020, 31(12): 2991-2992. doi: 10.1016/j.cclet.2020.03.030
Zhang Zhefan , Yan Jiyao , Ma Dengke , Sun Jianwei . Electrochemical synthesis of β-hydroxy-, β-alkoxy-, and β-carbonyloxy sulfones by vicinal difunctionalization of olefins. Chinese Chemical Letters, 2019, 30(8): 1509-1511. doi: 10.1016/j.cclet.2019.04.023
Fu-Sheng He , Min Yang , Shengqing Ye , Jie Wu . Sulfonylation from sodium dithionite or thiourea dioxide. Chinese Chemical Letters, 2021, 32(1): 461-464. doi: 10.1016/j.cclet.2020.04.043
Cai Ding XU , Ji Qing JIANG , Xian HUANG . A NEW SYNTHESIS OF SULFONES VIA THE ZINC-ASSISTED COUPLING OF ARENESULFONYL CHLORIDE WITH ALKYL HALIDES. Chinese Chemical Letters, 1993, 4(12): 1051-1052.
Hui LIU , Lin XIA , Yun Hua YE . Organophosphorus Compound DEPBT as a Coupling Reagent for Oligopeptides and Peptoids Synthesis:Studies on Its Mechanism. Chinese Chemical Letters, 2002, 13(7): 601-604.
Yan Nei HE , Yao LIN . Application of an Organophosphorus Compound-DEPBT as Coupling Reagent in Liquid Phase Peptide Synthesis. Chinese Chemical Letters, 1997, 8(9): 749-750.
Wen Yan Hao , Jian Wen Jiang , Ming Zhong Cai . A facile stereospecific synthesis of (Z)-2-sulfonyl-substituted 1, 3-enynes via Sonogashira coupling of (E)-α-iodovinyl sulfones with 1-alkynes. Chinese Chemical Letters, 2007, 18(7): 773-776. doi: 10.1016/j.cclet.2007.05.021
Zi-Xin Yang , Liangchuan Lai , Jingze Chen , Hong Yan , Ke-Yin Ye , Fen-Er Chen . Stereoselective electrochemical carboxylation of α,β-unsaturated sulfones. Chinese Chemical Letters, 2023, 34(6): 107956-1-107956-4. doi: 10.1016/j.cclet.2022.107956
Tao Xuefen , Sheng Rong , Bao Kun , Wang Yuxin , Jin Yinxiu . Progress of Difluoromethyl Heteroaryl Sulfones as Difluoroalkylation Reagents. Chinese Journal of Organic Chemistry, 2019, 39(10): 2726-2734. doi: 10.6023/cjoc201903063
Reza Heydari Malek Taher Maghsoodlou , Razieh Nejat Yami . An efficient method for synthesis of organophosphorus compounds in aqueous media. Chinese Chemical Letters, 2009, 20(10): 1175-1178. doi: 10.1016/j.cclet.2009.05.019
Jian Xue , Lu Ling Wu , Xian Huang . The facile insertion of β-keto sulfones to arynes:The direct preparation of polysubstituted ortho-keto benzyl sulfones. Chinese Chemical Letters, 2008, 19(6): 631-633. doi: 10.1016/j.cclet.2008.04.006
Chen Zhen , Guo Kang , Chen Rongshun , Gu Chen , Zhou Huating , Zhu Yingguang . Facile Access to β-Ketosulfones via Mn-Mediated Reductive Coupling of α-Bromoketones with Sulfonyl Chlorides. Chinese Journal of Organic Chemistry, 2018, 38(4): 963-968. doi: 10.6023/cjoc201710027
Ji Ming ZHANG , Yong Min ZHANG . Catalytic HgCl2-Samarium System Induced Reductive Coupling of Nitriles with Nitro Compounds. Chinese Chemical Letters, 2002, 13(2): 97-100.
Zhi Fang LI , Ping LU , Yong Min ZHANG . Facile Synthesis of Amidines via Intermolecular Reductive Coupling of Nitriles with Azobenzene Promoted by Samarium Diiodide. Chinese Chemical Letters, 2000, 11(6): 495-498.
Da Qing SHI , Lai Long MU , Zai Sheng LU , Gui Yuan DAI . Low-valent Titanium Induced Reductive Coupling Reaction of Aryl Sulfonyl Chlorides with α,β-Unsaturated Esters. Chinese Chemical Letters, 1997, 8(8): 677-678.
Zi Jie HOU , Li dun LIU , Yu Lin LI . LOW-VALENT TITANIUM INDUCED REDUCTIVE COUPLING REACTION OF AROMATIC α-HYDROXY KETONES. Chinese Chemical Letters, 1992, 3(4): 279-280.
Da Qing SHI , Wei Xing CHEN . LOW-VALENT TITANIUM INDUCED REDUCTIVE CROSS-COUPLING REACTION OF ESTERS WITH DIARYL KETONES. Chinese Chemical Letters, 1993, 4(11): 941-942.
Wei Xing CHEN , Jian Xie CHEN , Jian Ping JIANG , Tsi Yu KAO . LOW-VALENT TITANIUM INDUCED REDUCTIVE COUPLING OF AROMATIC NTTRILES TO 1,2-ARYLETHANONES. Chinese Chemical Letters, 1991, 2(5): 351-352.
Wang Shuai , Yang Cheng , Sun Shuo , Sun Hanli , Wang Jianbo . Palladium-Catalyzed Reductive Coupling of Aromatic Bromides and Trimethylsilyldiazomethane: Its Application to Methylation of Aromatic Compounds. Chinese Journal of Organic Chemistry, 2020, 40(11): 3881-3888. doi: 10.6023/cjoc202006075
Shuo Chen , Qingru Wen , Yanqing Zhu , Yanru Ji , Yu Pu , Zhengli Liu , Yun He , Zhang Feng . Boron-promoted reductive deoxygenation coupling reaction of sulfonyl chlorides for the C(sp3)-S bond construction. Chinese Chemical Letters, 2022, 33(12): 5101-5105. doi: 10.1016/j.cclet.2022.04.022