Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes
-
* Corresponding author.
E-mail address: shuxingzh@lzu.edu.cn (X.-Z. Shu).
Citation:
Liangliang Qi, Xiaobo Pang, Kai Yin, Qiu-Quan Pan, Xiao-Xue Wei, Xing-Zhong Shu. Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes[J]. Chinese Chemical Letters,
;2022, 33(12): 5061-5064.
doi:
10.1016/j.cclet.2022.03.070
T. Hiyama, Organosilicon compounds in cross-coupling Reactions tamejiro hiyama, in: F. Diederich, P.J. Stang (Eds.), Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, New York, 1998, pp. 421–454.
T. Hiyama, M. Oestreich, Organosilicon Chemistry: Novel Approaches and Reactions, Wiley-VCH, Weinheim, 2019.
B. Boutevin, F. Guida-Pietrasanta, A. Ratsimihety, Silicon containing polymers, in: R.G. Jones, W. Ando, J. Chojnowski (Eds.), The Science and Technology of Their Synthesis and Application, Springer, Dordrecht, 2000, pp. 79–112.
R. Tacke, S. Dorrich, Drug design based on the carbon/silicon switch strategy, in: J. Schwarz (Ed.), Atypical Elements in Drug Design, Springer, Cham, 2016, pp. 29–59.
B.A. Keay, I. Fleming, Arylsilanes Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, 4, Georg Thieme Verlag, 2002, pp. 685–712.
B. Marciniec, Hydrosilylation: A Comprehensive Review on Recent Advances, Springer, Dordrecht, 2008.
D. Troegel, J. Stohrer, Coord. Chem. Rev. 255 (2011) 1440–1459.
doi: 10.1016/j.ccr.2010.12.025
X. Du, Z. Huang, ACS Catal. 7 (2017) 1227–1243.
doi: 10.1021/acscatal.6b02990
J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 36 (2018) 1075–1109.
doi: 10.1002/cjoc.201800314
K. Li, M. Nie, W. Tang, Green Synth. Catal. 1 (2020) 171–174.
doi: 10.1016/j.gresc.2020.08.003
S. Mallick, E.U. Wurthwein, A. Studer, Org. Lett. 22 (2020) 6568–6572.
doi: 10.1021/acs.orglett.0c02337
X. Du, Y. Zhang, D. Peng, Z. Huang, Angew. Chem. Int. Ed. 55 (2016) 6671–6675.
doi: 10.1002/anie.201601197
M.W. Gribble, M.T. Pirnot, J.S. Bandar, R.Y. Liu, S.L. Buchwald, J. Am. Chem. Soc. 139 (2017) 2192–2195.
doi: 10.1021/jacs.6b13029
C. Wang, W.J. Teo, S. Ge, ACS Catal. 7 (2017) 855–863.
doi: 10.1021/acscatal.6b02518
B. Cheng, P. Lu, H. Zhang, X. Cheng, Z. Lu, J. Am. Chem. Soc. 139 (2017) 9439–9442.
doi: 10.1021/jacs.7b04137
M.Y. Hu, Q. He, S.J. Fan, et al., Nat. Commun. 9 (2018) 221–231.
doi: 10.1038/s41467-017-02472-6
S. Bahr, W. Xue, M. Oestreich, ACS Catal. 9 (2019) 16–24.
doi: 10.1021/acscatal.8b04230
K. Murakami, K. Hirano, H. Yorimitsu, K. Oshima, Angew. Chem. Int. Ed. 47 (2008) 5833–5835.
doi: 10.1002/anie.200801949
M. Tobisu, Y. Kita, N. Chatani, J. Am. Chem. Soc. 128 (2006) 8152–8153.
doi: 10.1021/ja062745w
V. Murugesan, V. Balakrishnan, R. Rasappan, J. Catal. 377 (2019) 293–298.
doi: 10.1016/j.jcat.2019.07.026
Y.Y. Kong, Z.X. Wang, Adv. Synth. Catal. 361 (2019) 5440–5448.
doi: 10.1002/adsc.201900949
K.M. Korch, D.A. Watson, Chem. Rev. 119 (2019) 8192–8228.
doi: 10.1021/acs.chemrev.8b00628
J. Terao, K. Torii, K. Saito, et al., Angew. Chem. Int. Ed. 37 (1998) 2653–2656.
doi: 10.1002/(SICI)1521-3773(19981016)37:19<2653::AID-ANIE2653>3.0.CO;2-3
J.R. McAtee, S.E.S. Martin, D.T. Ahneman, K.A. Johnson, D.A. Watson, Angew. Chem. Int. Ed. 51 (2012) 3663–3667.
doi: 10.1002/anie.201200060
S.E.S. Martin, D.A. Watson, J. Am. Chem. Soc. 135 (2013) 13330–13333.
doi: 10.1021/ja407748z
C.K. Chu, Y. Liang, G.C. Fu, J. Am. Chem. Soc. 138 (2016) 6404–6407.
doi: 10.1021/jacs.6b03465
W. Xue, Z.W. Qu, S. Grimme, M. Oestreich, J. Am. Chem. Soc. 138 (2016) 14222–14225.
doi: 10.1021/jacs.6b09596
W. Xue, M. Oestreich, Angew. Chem. Int. Ed. 56 (2017) 11649–11652.
doi: 10.1002/anie.201706611
J. Scharfbier, H. Hazrati, E. Irran, M. Oestreich, Org. Lett. 19 (2017) 6562–6565.
doi: 10.1021/acs.orglett.7b03279
W. Xue, R. Shishido, M. Oestreich, Angew. Chem. Int. Ed. 57 (2018) 12141–12145.
doi: 10.1002/anie.201807640
J. Scharfbier, B.M. Gross, M. Oestreich, Angew. Chem. Int. Ed. 59 (2020) 1577–1580.
doi: 10.1002/anie.201912490
S. Wang, M. Sun, H. Zhang, et al., CCS Chem. 3 (2021) 2164–2173.
doi: 10.31635/ccschem.020.202000447
V. Balakrishnan, V. Murugesan, B. Chindan, R. Rasappan, Org. Lett. 23 (2021) 1333–1338.
doi: 10.1021/acs.orglett.0c04316
A.P. Cinderella, B. Vulovic, D.A. Watson, J. Am. Chem. Soc. 139 (2017) 7741–7744.
doi: 10.1021/jacs.7b04364
B. Vulovic, A.P. Cinderella, D.A. Watson, ACS Catal. 7 (2017) 8113–8117.
doi: 10.1021/acscatal.7b03465
C.E.I. Knappke, S. Grupe, D. Gärtner, et al., Chem. Eur. J. 20 (2014) 6828–6942.
doi: 10.1002/chem.201402302
T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 20 (2014) 8242–8258.
doi: 10.1002/chem.201402509
E.L. Lucas, E.R. Jarvo, Nat. Rev. Chem. 1 (2017) 0065–0071.
doi: 10.1038/s41570-017-0065
M.J. Goldfogel, L. Huang, D.J. Weix, Cross electrophile coupling: principles and new reactions, in: S. Ogoshi (Ed.), Nickel Catalysis in Synthesis: Methods and Reactions, Wiley-VCH, Weinheim, 2020, pp. 183–222.
J. Liu, Y. Ye, J.L. Sessler, H. Gong, ACC Chem. Res. 53 (2020) 1833–1845.
doi: 10.1021/acs.accounts.0c00291
K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.
doi: 10.1021/acscatal.0c01842
X. Pang, X. Peng, X.Z. Shu, Synthesis (Mass) 52 (2020) 3751–3763.
doi: 10.1055/s-0040-1707342
P. Zheng, P. Zhou, D. Wang, et al., Nat. Commun. 12 (2021) 1646.
doi: 10.1038/s41467-021-21947-1
D. Wang, T. Xu, ACS Catal. 11 (2021) 12469–12475.
doi: 10.1021/acscatal.1c03265
X.G. Jia, P. Guo, J. Duan, X.Z. Shu, Chem. Sci. 9 (2018) 640–645.
doi: 10.1039/C7SC03140H
X.B. Yan, C.L. Li, W.J. Jin, P. Guo, X.Z. Shu, Chem. Sci. 9 (2018) 4529–4534.
doi: 10.1039/C8SC00609A
R.D. He, C.L. Li, Q.Q. Pan, et al., J. Am. Chem. Soc. 141 (2019) 12481–12486.
doi: 10.1021/jacs.9b05224
H. Xie, J. Guo, Y.Q. Wang, et al., J. Am. Chem. Soc. 142 (2020) 16787–16794.
doi: 10.1021/jacs.0c07492
P. Guo, K. Wang, W.J. Jin, et al., J. Am. Chem. Soc. 143 (2021) 513–523.
doi: 10.1021/jacs.0c12462
P.F. Su, K. Wang, X. Peng, et al., Angew. Chem. Int. Ed. 60 (2021) 26571–26576.
doi: 10.1002/anie.202112876
J. Duan, K. Wang, G.L. Xu, et al., Angew. Chem. Int. Ed. 59 (2020) 23083–23088.
doi: 10.1002/anie.202010737
L. Zhang, M. Oestreich, Angew. Chem. Int. Ed. 60 (2021) 18587–1859.
doi: 10.1002/anie.202107492
M. Xing, H. Cui, C. Zhang, Org. Lett. 23 (2021) 7645–7649.
doi: 10.1021/acs.orglett.1c02887
J. Duan, Y. Wang, L. Qi, et al., Org. Lett. 23 (2021) 7855–7859.
doi: 10.1021/acs.orglett.1c02874
H. Yamashita, M. Tanaka, M. Goto, Organometallics 16 (1997) 4696–4707.
doi: 10.1021/om970214y
B. Vulovic, A.P. Cinderella, D.A. Watson, ACS Catal. 7 (2017) 8113–8117.
doi: 10.1021/acscatal.7b03465
K. Matsumoto, J. Huang, Y. Naganawa, et al., Org. Lett. 20 (2018) 2481–2484.
doi: 10.1021/acs.orglett.8b00847
D.J. Ager, The peterson olefination reaction, in: L.P. Paquette (Ed.), Organic Reactions, Wiley, 1990, pp. 1–219.
P.S. Jones, S.V. Ley, N.S. Simpkins, A.J. Whittle, Tetrahedron 42 (1986) 6519–6534.
doi: 10.1016/S0040-4020(01)88114-X
M.B. Anderson, P.L. Fuchs, J. Org. Chem. 55 (1990) 337–342.
doi: 10.1021/jo00288a058
D.J. Ager, J. Chem. Soc. Chem. Commun. (1984) 486–488.
D. Craig, S.V. Ley, N.S. Simpkins, G.H. Whitham, M.J. Prior, J. Chem. Soc. Perkin Trans. 1 (1985) 1949–1952.
E.E. Aboujaoude, S. Liétjé, N. Collignon, M.P. Teulade, P.A. Savignac, Synthesis 11 (1986) 934–937.
A.G. Shipov, Y.I. Baukov, Zh. Obshch. Khim. 54 (1984) 1842.
H. Keipour, V. Carreras, T. Ollevier, Org. Biomol. Chem. 15 (2017) 5441–5456.
doi: 10.1039/C7OB00807D
W. Ando, A. Sekiguchi, T. Hagiwara, et al., J. Am. Chem. Soc. 101 (1979) 6393–6398.
doi: 10.1021/ja00515a038
S.B.J. Kan, R.D. Lewis, K. Chen, F.H. Arnold, Science 354 (2016) 1048–1051.
doi: 10.1126/science.aah6219
D. Chen, D.X. Zhu, M.H. Xu, J. Am. Chem. Soc. 138 (2016) 1498–1501.
doi: 10.1021/jacs.5b12960
W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029–3070.
doi: 10.1021/cr020049i
P.W.N.M. van Leeuwen, P.C.J. Kamer, C. Claver, O. Pamies, M. Dièguez, Chem. Rev. 111 (2011) 2077–2118.
doi: 10.1021/cr1002497
M. Mellah, A. Voituriez, E. Schulz, Chem. Rev. 107 (2007) 5133–5209.
doi: 10.1021/cr068440h
C. Li, Catal. Rev. 46 (2004) 419–492.
doi: 10.1081/CR-200036734
L. Barfacker, D.E. Tom, P. Eilbraeht, Tetrahedron Lett. 40 (1999) 4031–4034.
doi: 10.1016/S0040-4039(99)00678-4
P.P. Matloka, K.B. Wagener, J. Mol. Catal. A 257 (2006) 89–98.
doi: 10.1016/j.molcata.2006.06.006
J.W. Park, C.H. Jun, J. Am. Chem. Soc. 132 (2010) 7268–7269.
doi: 10.1021/ja102741k
M.I. Antczak, J.L. Montchamp, J. Org. Chem. 74 (2009) 3758–3766.
doi: 10.1021/jo900300c
K. Chang, B. Ku, D.Y. Oh, Syn. Commun. 19 (1989) 1891–1898.
doi: 10.1080/00397918908052580
M. Linnert, C. Bruhn, C. Wagner, D. Steinborn, J. Organomet. Chem. 691 (2006) 2358–2367.
doi: 10.1016/j.jorganchem.2005.12.048
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Xin Huang , Yi Zhao , Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Bowen Wang , Longwu Sun , Qianqian Cao , Xinzhi Li , Jianai Chen , Shizhao Wang , Miaolin Ke , Fener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Zheyu Li , Huwei Li , Yao Li , Xinyu Fu , Hongxia Yue , Qingxing Yang , Jing Feng , Xinyu Wang , Hongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445