Citation: Liangliang Qi, Xiaobo Pang, Kai Yin, Qiu-Quan Pan, Xiao-Xue Wei, Xing-Zhong Shu. Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes[J]. Chinese Chemical Letters, ;2022, 33(12): 5061-5064. doi: 10.1016/j.cclet.2022.03.070 shu

Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes

    * Corresponding author.
    E-mail address: shuxingzh@lzu.edu.cn (X.-Z. Shu).
  • Received Date: 24 January 2022
    Revised Date: 9 March 2022
    Accepted Date: 16 March 2022
    Available Online: 18 March 2022

Figures(6)

  • The construction of secondary alkylsilanes is a challenging subject in the synthetic community. The cross-coupling provides a practical solution to address this problem, but it typically relies on organometallic species. Herein, we report an Mn-mediated reductive C(sp3)–Si coupling to synthesize these compounds from alkyl and silyl electrophiles. This approach avoids the requirement for activation of Si–Cl by transition metals and thus allows for the coupling of various common chlorosilanes. The reaction proceeds under mild conditions and shows good functional group compatibility. The method offers access to α-silylated organophosphorus and sulfones with a scope that is complementary to those obtained from the established methods.
  • 加载中
    1. [1]

      T. Hiyama, Organosilicon compounds in cross-coupling Reactions tamejiro hiyama, in: F. Diederich, P.J. Stang (Eds.), Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, New York, 1998, pp. 421–454.

    2. [2]

      T. Hiyama, M. Oestreich, Organosilicon Chemistry: Novel Approaches and Reactions, Wiley-VCH, Weinheim, 2019.

    3. [3]

      B. Boutevin, F. Guida-Pietrasanta, A. Ratsimihety, Silicon containing polymers, in: R.G. Jones, W. Ando, J. Chojnowski (Eds.), The Science and Technology of Their Synthesis and Application, Springer, Dordrecht, 2000, pp. 79–112.

    4. [4]

      R. Tacke, S. Dorrich, Drug design based on the carbon/silicon switch strategy, in: J. Schwarz (Ed.), Atypical Elements in Drug Design, Springer, Cham, 2016, pp. 29–59.

    5. [5]

      B.A. Keay, I. Fleming, Arylsilanes Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, 4, Georg Thieme Verlag, 2002, pp. 685–712.

    6. [6]

      B. Marciniec, Hydrosilylation: A Comprehensive Review on Recent Advances, Springer, Dordrecht, 2008.

    7. [7]

      D. Troegel, J. Stohrer, Coord. Chem. Rev. 255 (2011) 1440–1459.  doi: 10.1016/j.ccr.2010.12.025

    8. [8]

      X. Du, Z. Huang, ACS Catal. 7 (2017) 1227–1243.  doi: 10.1021/acscatal.6b02990

    9. [9]

      J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 36 (2018) 1075–1109.  doi: 10.1002/cjoc.201800314

    10. [10]

      K. Li, M. Nie, W. Tang, Green Synth. Catal. 1 (2020) 171–174.  doi: 10.1016/j.gresc.2020.08.003

    11. [11]

      S. Mallick, E.U. Wurthwein, A. Studer, Org. Lett. 22 (2020) 6568–6572.  doi: 10.1021/acs.orglett.0c02337

    12. [12]

      X. Du, Y. Zhang, D. Peng, Z. Huang, Angew. Chem. Int. Ed. 55 (2016) 6671–6675.  doi: 10.1002/anie.201601197

    13. [13]

      M.W. Gribble, M.T. Pirnot, J.S. Bandar, R.Y. Liu, S.L. Buchwald, J. Am. Chem. Soc. 139 (2017) 2192–2195.  doi: 10.1021/jacs.6b13029

    14. [14]

      C. Wang, W.J. Teo, S. Ge, ACS Catal. 7 (2017) 855–863.  doi: 10.1021/acscatal.6b02518

    15. [15]

      B. Cheng, P. Lu, H. Zhang, X. Cheng, Z. Lu, J. Am. Chem. Soc. 139 (2017) 9439–9442.  doi: 10.1021/jacs.7b04137

    16. [16]

      M.Y. Hu, Q. He, S.J. Fan, et al., Nat. Commun. 9 (2018) 221–231.  doi: 10.1038/s41467-017-02472-6

    17. [17]

      S. Bahr, W. Xue, M. Oestreich, ACS Catal. 9 (2019) 16–24.  doi: 10.1021/acscatal.8b04230

    18. [18]

      K. Murakami, K. Hirano, H. Yorimitsu, K. Oshima, Angew. Chem. Int. Ed. 47 (2008) 5833–5835.  doi: 10.1002/anie.200801949

    19. [19]

      M. Tobisu, Y. Kita, N. Chatani, J. Am. Chem. Soc. 128 (2006) 8152–8153.  doi: 10.1021/ja062745w

    20. [20]

      V. Murugesan, V. Balakrishnan, R. Rasappan, J. Catal. 377 (2019) 293–298.  doi: 10.1016/j.jcat.2019.07.026

    21. [21]

      Y.Y. Kong, Z.X. Wang, Adv. Synth. Catal. 361 (2019) 5440–5448.  doi: 10.1002/adsc.201900949

    22. [22]

      K.M. Korch, D.A. Watson, Chem. Rev. 119 (2019) 8192–8228.  doi: 10.1021/acs.chemrev.8b00628

    23. [23]

      J. Terao, K. Torii, K. Saito, et al., Angew. Chem. Int. Ed. 37 (1998) 2653–2656.  doi: 10.1002/(SICI)1521-3773(19981016)37:19<2653::AID-ANIE2653>3.0.CO;2-3

    24. [24]

      J.R. McAtee, S.E.S. Martin, D.T. Ahneman, K.A. Johnson, D.A. Watson, Angew. Chem. Int. Ed. 51 (2012) 3663–3667.  doi: 10.1002/anie.201200060

    25. [25]

      S.E.S. Martin, D.A. Watson, J. Am. Chem. Soc. 135 (2013) 13330–13333.  doi: 10.1021/ja407748z

    26. [26]

      C.K. Chu, Y. Liang, G.C. Fu, J. Am. Chem. Soc. 138 (2016) 6404–6407.  doi: 10.1021/jacs.6b03465

    27. [27]

      W. Xue, Z.W. Qu, S. Grimme, M. Oestreich, J. Am. Chem. Soc. 138 (2016) 14222–14225.  doi: 10.1021/jacs.6b09596

    28. [28]

      W. Xue, M. Oestreich, Angew. Chem. Int. Ed. 56 (2017) 11649–11652.  doi: 10.1002/anie.201706611

    29. [29]

      J. Scharfbier, H. Hazrati, E. Irran, M. Oestreich, Org. Lett. 19 (2017) 6562–6565.  doi: 10.1021/acs.orglett.7b03279

    30. [30]

      W. Xue, R. Shishido, M. Oestreich, Angew. Chem. Int. Ed. 57 (2018) 12141–12145.  doi: 10.1002/anie.201807640

    31. [31]

      J. Scharfbier, B.M. Gross, M. Oestreich, Angew. Chem. Int. Ed. 59 (2020) 1577–1580.  doi: 10.1002/anie.201912490

    32. [32]

      S. Wang, M. Sun, H. Zhang, et al., CCS Chem. 3 (2021) 2164–2173.  doi: 10.31635/ccschem.020.202000447

    33. [33]

      V. Balakrishnan, V. Murugesan, B. Chindan, R. Rasappan, Org. Lett. 23 (2021) 1333–1338.  doi: 10.1021/acs.orglett.0c04316

    34. [34]

      A.P. Cinderella, B. Vulovic, D.A. Watson, J. Am. Chem. Soc. 139 (2017) 7741–7744.  doi: 10.1021/jacs.7b04364

    35. [35]

      B. Vulovic, A.P. Cinderella, D.A. Watson, ACS Catal. 7 (2017) 8113–8117.  doi: 10.1021/acscatal.7b03465

    36. [36]

      C.E.I. Knappke, S. Grupe, D. Gärtner, et al., Chem. Eur. J. 20 (2014) 6828–6942.  doi: 10.1002/chem.201402302

    37. [37]

      T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 20 (2014) 8242–8258.  doi: 10.1002/chem.201402509

    38. [38]

      E.L. Lucas, E.R. Jarvo, Nat. Rev. Chem. 1 (2017) 0065–0071.  doi: 10.1038/s41570-017-0065

    39. [39]

      M.J. Goldfogel, L. Huang, D.J. Weix, Cross electrophile coupling: principles and new reactions, in: S. Ogoshi (Ed.), Nickel Catalysis in Synthesis: Methods and Reactions, Wiley-VCH, Weinheim, 2020, pp. 183–222.

    40. [40]

      J. Liu, Y. Ye, J.L. Sessler, H. Gong, ACC Chem. Res. 53 (2020) 1833–1845.  doi: 10.1021/acs.accounts.0c00291

    41. [41]

      K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.  doi: 10.1021/acscatal.0c01842

    42. [42]

      X. Pang, X. Peng, X.Z. Shu, Synthesis (Mass) 52 (2020) 3751–3763.  doi: 10.1055/s-0040-1707342

    43. [43]

      P. Zheng, P. Zhou, D. Wang, et al., Nat. Commun. 12 (2021) 1646.  doi: 10.1038/s41467-021-21947-1

    44. [44]

      D. Wang, T. Xu, ACS Catal. 11 (2021) 12469–12475.  doi: 10.1021/acscatal.1c03265

    45. [45]

      X.G. Jia, P. Guo, J. Duan, X.Z. Shu, Chem. Sci. 9 (2018) 640–645.  doi: 10.1039/C7SC03140H

    46. [46]

      X.B. Yan, C.L. Li, W.J. Jin, P. Guo, X.Z. Shu, Chem. Sci. 9 (2018) 4529–4534.  doi: 10.1039/C8SC00609A

    47. [47]

      R.D. He, C.L. Li, Q.Q. Pan, et al., J. Am. Chem. Soc. 141 (2019) 12481–12486.  doi: 10.1021/jacs.9b05224

    48. [48]

      H. Xie, J. Guo, Y.Q. Wang, et al., J. Am. Chem. Soc. 142 (2020) 16787–16794.  doi: 10.1021/jacs.0c07492

    49. [49]

      P. Guo, K. Wang, W.J. Jin, et al., J. Am. Chem. Soc. 143 (2021) 513–523.  doi: 10.1021/jacs.0c12462

    50. [50]

      P.F. Su, K. Wang, X. Peng, et al., Angew. Chem. Int. Ed. 60 (2021) 26571–26576.  doi: 10.1002/anie.202112876

    51. [51]

      J. Duan, K. Wang, G.L. Xu, et al., Angew. Chem. Int. Ed. 59 (2020) 23083–23088.  doi: 10.1002/anie.202010737

    52. [52]

      L. Zhang, M. Oestreich, Angew. Chem. Int. Ed. 60 (2021) 18587–1859.  doi: 10.1002/anie.202107492

    53. [53]

      M. Xing, H. Cui, C. Zhang, Org. Lett. 23 (2021) 7645–7649.  doi: 10.1021/acs.orglett.1c02887

    54. [54]

      J. Duan, Y. Wang, L. Qi, et al., Org. Lett. 23 (2021) 7855–7859.  doi: 10.1021/acs.orglett.1c02874

    55. [55]

      H. Yamashita, M. Tanaka, M. Goto, Organometallics 16 (1997) 4696–4707.  doi: 10.1021/om970214y

    56. [56]

      B. Vulovic, A.P. Cinderella, D.A. Watson, ACS Catal. 7 (2017) 8113–8117.  doi: 10.1021/acscatal.7b03465

    57. [57]

      K. Matsumoto, J. Huang, Y. Naganawa, et al., Org. Lett. 20 (2018) 2481–2484.  doi: 10.1021/acs.orglett.8b00847

    58. [58]

      D.J. Ager, The peterson olefination reaction, in: L.P. Paquette (Ed.), Organic Reactions, Wiley, 1990, pp. 1–219.

    59. [59]

      P.S. Jones, S.V. Ley, N.S. Simpkins, A.J. Whittle, Tetrahedron 42 (1986) 6519–6534.  doi: 10.1016/S0040-4020(01)88114-X

    60. [60]

      M.B. Anderson, P.L. Fuchs, J. Org. Chem. 55 (1990) 337–342.  doi: 10.1021/jo00288a058

    61. [61]

      D.J. Ager, J. Chem. Soc. Chem. Commun. (1984) 486–488.

    62. [62]

      D. Craig, S.V. Ley, N.S. Simpkins, G.H. Whitham, M.J. Prior, J. Chem. Soc. Perkin Trans. 1 (1985) 1949–1952.

    63. [63]

      E.E. Aboujaoude, S. Liétjé, N. Collignon, M.P. Teulade, P.A. Savignac, Synthesis 11 (1986) 934–937.

    64. [64]

      A.G. Shipov, Y.I. Baukov, Zh. Obshch. Khim. 54 (1984) 1842.

    65. [65]

      H. Keipour, V. Carreras, T. Ollevier, Org. Biomol. Chem. 15 (2017) 5441–5456.  doi: 10.1039/C7OB00807D

    66. [66]

      W. Ando, A. Sekiguchi, T. Hagiwara, et al., J. Am. Chem. Soc. 101 (1979) 6393–6398.  doi: 10.1021/ja00515a038

    67. [67]

      S.B.J. Kan, R.D. Lewis, K. Chen, F.H. Arnold, Science 354 (2016) 1048–1051.  doi: 10.1126/science.aah6219

    68. [68]

      D. Chen, D.X. Zhu, M.H. Xu, J. Am. Chem. Soc. 138 (2016) 1498–1501.  doi: 10.1021/jacs.5b12960

    69. [69]

      W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029–3070.  doi: 10.1021/cr020049i

    70. [70]

      P.W.N.M. van Leeuwen, P.C.J. Kamer, C. Claver, O. Pamies, M. Dièguez, Chem. Rev. 111 (2011) 2077–2118.  doi: 10.1021/cr1002497

    71. [71]

      M. Mellah, A. Voituriez, E. Schulz, Chem. Rev. 107 (2007) 5133–5209.  doi: 10.1021/cr068440h

    72. [72]

      C. Li, Catal. Rev. 46 (2004) 419–492.  doi: 10.1081/CR-200036734

    73. [73]

      L. Barfacker, D.E. Tom, P. Eilbraeht, Tetrahedron Lett. 40 (1999) 4031–4034.  doi: 10.1016/S0040-4039(99)00678-4

    74. [74]

      P.P. Matloka, K.B. Wagener, J. Mol. Catal. A 257 (2006) 89–98.  doi: 10.1016/j.molcata.2006.06.006

    75. [75]

      J.W. Park, C.H. Jun, J. Am. Chem. Soc. 132 (2010) 7268–7269.  doi: 10.1021/ja102741k

    76. [76]

      M.I. Antczak, J.L. Montchamp, J. Org. Chem. 74 (2009) 3758–3766.  doi: 10.1021/jo900300c

    77. [77]

      K. Chang, B. Ku, D.Y. Oh, Syn. Commun. 19 (1989) 1891–1898.  doi: 10.1080/00397918908052580

    78. [78]

      M. Linnert, C. Bruhn, C. Wagner, D. Steinborn, J. Organomet. Chem. 691 (2006) 2358–2367.  doi: 10.1016/j.jorganchem.2005.12.048

  • 加载中
    1. [1]

      Lili TangKejie DuBing YuLiangnian He . Oxidation of aromatic sulfides with molecular oxygen: Controllable synthesis of sulfoxides or sulfones. Chinese Chemical Letters, 2020, 31(12): 2991-2992. doi: 10.1016/j.cclet.2020.03.030

    2. [2]

      Zhang ZhefanYan JiyaoMa DengkeSun Jianwei . Electrochemical synthesis of β-hydroxy-, β-alkoxy-, and β-carbonyloxy sulfones by vicinal difunctionalization of olefins. Chinese Chemical Letters, 2019, 30(8): 1509-1511. doi: 10.1016/j.cclet.2019.04.023

    3. [3]

      Fu-Sheng HeMin YangShengqing YeJie Wu . Sulfonylation from sodium dithionite or thiourea dioxide. Chinese Chemical Letters, 2021, 32(1): 461-464. doi: 10.1016/j.cclet.2020.04.043

    4. [4]

      Cai Ding XU Ji Qing JIANG Xian HUANG . A NEW SYNTHESIS OF SULFONES VIA THE ZINC-ASSISTED COUPLING OF ARENESULFONYL CHLORIDE WITH ALKYL HALIDES. Chinese Chemical Letters, 1993, 4(12): 1051-1052.

    5. [5]

      Hui LIU Lin XIA Yun Hua YE . Organophosphorus Compound DEPBT as a Coupling Reagent for Oligopeptides and Peptoids Synthesis:Studies on Its Mechanism. Chinese Chemical Letters, 2002, 13(7): 601-604.

    6. [6]

      Yan Nei HE Yao LIN . Application of an Organophosphorus Compound-DEPBT as Coupling Reagent in Liquid Phase Peptide Synthesis. Chinese Chemical Letters, 1997, 8(9): 749-750.

    7. [7]

      Wen Yan Hao Jian Wen Jiang Ming Zhong Cai . A facile stereospecific synthesis of (Z)-2-sulfonyl-substituted 1, 3-enynes via Sonogashira coupling of (E)-α-iodovinyl sulfones with 1-alkynes. Chinese Chemical Letters, 2007, 18(7): 773-776. doi: 10.1016/j.cclet.2007.05.021

    8. [8]

      Tao XuefenSheng RongBao KunWang YuxinJin Yinxiu . Progress of Difluoromethyl Heteroaryl Sulfones as Difluoroalkylation Reagents. Chinese Journal of Organic Chemistry, 2019, 39(10): 2726-2734. doi: 10.6023/cjoc201903063

    9. [9]

      Reza Heydari Malek Taher Maghsoodlou Razieh Nejat Yami . An efficient method for synthesis of organophosphorus compounds in aqueous media. Chinese Chemical Letters, 2009, 20(10): 1175-1178. doi: 10.1016/j.cclet.2009.05.019

    10. [10]

      Jian Xue Lu Ling Wu Xian Huang . The facile insertion of β-keto sulfones to arynes:The direct preparation of polysubstituted ortho-keto benzyl sulfones. Chinese Chemical Letters, 2008, 19(6): 631-633. doi: 10.1016/j.cclet.2008.04.006

    11. [11]

      Chen ZhenGuo KangChen RongshunGu ChenZhou HuatingZhu Yingguang . Facile Access to β-Ketosulfones via Mn-Mediated Reductive Coupling of α-Bromoketones with Sulfonyl Chlorides. Chinese Journal of Organic Chemistry, 2018, 38(4): 963-968. doi: 10.6023/cjoc201710027

    12. [12]

      Ji Ming ZHANG Yong Min ZHANG . Catalytic HgCl2-Samarium System Induced Reductive Coupling of Nitriles with Nitro Compounds. Chinese Chemical Letters, 2002, 13(2): 97-100.

    13. [13]

      Zhi Fang LI Ping LU Yong Min ZHANG . Facile Synthesis of Amidines via Intermolecular Reductive Coupling of Nitriles with Azobenzene Promoted by Samarium Diiodide. Chinese Chemical Letters, 2000, 11(6): 495-498.

    14. [14]

      Da Qing SHI Lai Long MU Zai Sheng LU Gui Yuan DAI . Low-valent Titanium Induced Reductive Coupling Reaction of Aryl Sulfonyl Chlorides with α,β-Unsaturated Esters. Chinese Chemical Letters, 1997, 8(8): 677-678.

    15. [15]

      Zi Jie HOU Li dun LIU Yu Lin LI . LOW-VALENT TITANIUM INDUCED REDUCTIVE COUPLING REACTION OF AROMATIC α-HYDROXY KETONES. Chinese Chemical Letters, 1992, 3(4): 279-280.

    16. [16]

      Da Qing SHI Wei Xing CHEN . LOW-VALENT TITANIUM INDUCED REDUCTIVE CROSS-COUPLING REACTION OF ESTERS WITH DIARYL KETONES. Chinese Chemical Letters, 1993, 4(11): 941-942.

    17. [17]

      Wei Xing CHEN Jian Xie CHEN Jian Ping JIANG Tsi Yu KAO . LOW-VALENT TITANIUM INDUCED REDUCTIVE COUPLING OF AROMATIC NTTRILES TO 1,2-ARYLETHANONES. Chinese Chemical Letters, 1991, 2(5): 351-352.

    18. [18]

      Wang ShuaiYang ChengSun ShuoSun HanliWang Jianbo . Palladium-Catalyzed Reductive Coupling of Aromatic Bromides and Trimethylsilyldiazomethane: Its Application to Methylation of Aromatic Compounds. Chinese Journal of Organic Chemistry, 2020, 40(11): 3881-3888. doi: 10.6023/cjoc202006075

    19. [19]

      Shuo ChenQingru WenYanqing ZhuYanru JiYu PuZhengli LiuYun HeZhang Feng . Boron-promoted reductive deoxygenation coupling reaction of sulfonyl chlorides for the C(sp3)-S bond construction. Chinese Chemical Letters, 2022, 33(12): 5101-5105. doi: 10.1016/j.cclet.2022.04.022

    20. [20]

      Pei Qiang HUANG Xiang Su FEI Hong ZHENG . α-AMIDOALKYLATION VIA SULFONES:TOWARDS THE SYNTHESIS OF ANT VENOM ALKALOIDS. Chinese Chemical Letters, 1995, 6(9): 739-742.

Metrics
  • PDF Downloads(0)
  • Abstract views(81)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return