Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles
-
* Corresponding author.
E-mail address: zwcai@hkbu.edu.hk (Z. Cai).
Citation:
Ting Zeng, Yanshan Liang, Qingyuan Dai, Jinglin Tian, Jinyao Chen, Bo Lei, Zhu Yang, Zongwei Cai. Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles[J]. Chinese Chemical Letters,
;2022, 33(12): 5184-5188.
doi:
10.1016/j.cclet.2022.03.020
S. Himeno, K. Aoshima, Cadmium Toxicity: New Aspects in Human Disease, Rice Contamination, and Cytotoxicity, Singapore, 2019.
S. Satarug, Toxics. 6 (2018) 15.
doi: 10.3390/toxics6010015
E.D. Evans, C. Duvallet, N.D. Chu, et al., Sci. Rep. 10 (2020) 1–13.
doi: 10.1038/s41598-019-56847-4
A.S. Martinez-Vernon, J.A. Covington, R.P. Arasaradnam, et al., PLoS ONE 13 (2018) e0204425.
doi: 10.1371/journal.pone.0204425
Y. Gao, Y. Lu, S. Huang, et al., Environ. Sci. Technol. 48 (2014) 6409–6418.
doi: 10.1021/es500750w
H. Li, K. Huang, S. Jin, et al., Int. J. Hyg. Environ. Heal. 222 (2019) 556–562.
doi: 10.1016/j.ijheh.2019.02.007
T. Zeng, Y.S. Liang, J.Y. Chen, et al., Environ. Int. 154 (2021) 106646.
doi: 10.1016/j.envint.2021.106646
E.H. Wilkes, G. Rumsby, G.M. Woodward, Clin. Chem. 64 (2018) 1586–1595.
doi: 10.1373/clinchem.2018.292201
H.E. Anderson, T. Liden, B.K. Berger, et al., Anal. Chim. Acta 1172 (2021) 338668.
doi: 10.1016/j.aca.2021.338668
F. Roux-Dalvai, C. Gotti, M. Leclercq, et al., Mol. Cell Proteom. 18 (2019) 2492–2505.
doi: 10.1074/mcp.tir119.001559
G.L. Streun, A.E. Steuer, L.C. Ebert, A. Dobay, T. Kraemer, Clin. Chem. Lab. Med. 59 (2021) 1392–1399.
doi: 10.1515/cclm-2021-0010
Y.C. Huang, H.H. Chung, E.P. Dutkiewicz, et al., Anal. Chem. 92 (2019) 1653–1657.
doi: 10.1002/cbic.201800814
U.W. Liebal, A.N.T. Phan, M. Sudhakar, K. Raman, L.M. Blank, Metabolites 10 (2020) 243.
doi: 10.3390/metabo10060243
E.H. Wilkes, E. Emmett, L. Beltran, G.M. Woodward, R.S. Carling, Clin. Chem. 66 (2020) 1210–1218.
doi: 10.1093/clinchem/hvaa134
J. Huo, Z. Huang, R. Li, et al., PLoS ONE 13 (2018) e0201454.
doi: 10.1371/journal.pone.0201454
J.M. Mato, M.L. Martínez-Chantar, S.C. Lu, Ann. Hepatol. 12 (2015) 183–189.
N.N. Pavlova, S. Hui, J.M. Ghergurovich, et al., Cell Metab. 27 (2018) 428–438.
doi: 10.1016/j.cmet.2017.12.006
J. Płonka, M. Babiuch, H. Barchanska, Chemosphere 286 (2022) 131592.
doi: 10.1016/j.chemosphere.2021.131592
M. Chen, B. Zhang, S. Cai, et al., J. Proteom. 200 (2019) 134–143.
doi: 10.1016/j.jprot.2019.03.015
J. Neunzig, R. Bernhardt, PLoS ONE 9 (2014) e89727.
doi: 10.1371/journal.pone.0089727
F.K. Abu Salem, M. Jurdi, M. Alkadri, F. Hachem, H.R. Dhaini, Environ. Sci. Pollut. Res. 29 (2022) 8253–8268.
doi: 10.1007/s11356-021-15897-w
X. Li, T. Geng, W. Shen, J. Zhang, Y. Zhou, Ecotoxicol. Environ. Saf. 209 (2021) 111773.
doi: 10.1016/j.ecoenv.2020.111773
K. Nakamura, T. Yasutaka, T. Kuwatani, T. Komai, Chemosphere 186 (2017) 501–509.
doi: 10.1016/j.chemosphere.2017.07.131
Z. Xin, S. Jun, T. Yan, et al., Chemometr. Intell. Lab. Syst. 200 (2020) 103996.
doi: 10.1016/j.chemolab.2020.103996
L. Wei, Y. Huang, Z. Chen, et al., Front. Oncol. 11 (2021) 4148.
X. Zhu, X. Wang, Y.S. Ok, J. Hazard. Mater. 378 (2019) 120727.
doi: 10.1016/j.jhazmat.2019.06.004
V. Cantoni, R. Green, C. Ricciardi, et al., Comput. Math Methods Med. 16 (2021) 5288844.
X. Jia, B. Hu, B.P. Marchant, et al., Environ. Pollut. 250 (2019) 601–609.
doi: 10.1016/j.envpol.2019.04.047
M. Hussain, Z. Chen, M. Lv, et al., Chin. Chem. Lett. 31 (2020) 3163–3167.
doi: 10.1016/j.cclet.2020.04.038
Y. Guo, A. Graber, R.N. McBurney, R. Balasubramanian, BMC Bioinform. 11 (2010) 1–19.
S.K. Park, Z. Zhao, B. Mukherjee, Environ. Health 16 (2017) 1–17.
doi: 10.1186/s12940-016-0208-y
T. Guan, Y. Xin, K. Zheng, et al., BioMetals 34 (2021) 33–48.
doi: 10.1007/s10534-020-00260-2
X. He, Z. Qi, H. Hou, J. Gao, X.X. Zhang, J. Hazard. Mater. 388 (2020) 121791.
doi: 10.1016/j.jhazmat.2019.121791
M.Y. Xu, Y.J. Sun, P. Wang, L. Yang, Y.J. Wu, Ecotoxicol. Environ. Saf. 195 (2020) 110467.
doi: 10.1016/j.ecoenv.2020.110467
L. Zong, J. Xing, L. Shu, et al., Ecotoxicol. Environ. Saf. 147 (2018) 26–33.
doi: 10.1016/j.ecoenv.2017.08.028
G. Xun, C. Yang, Y. Hong, et al., Sci. Total Environ. 676 (2019) 72–86.
doi: 10.1016/j.scitotenv.2019.04.208
L. Xie, Y. Zhao, J. Duan, et al., Chem. Res. Toxicol. 33 (2020) 1897–1906.
doi: 10.1021/acs.chemrestox.0c00091
Y. Liang, T. Zeng, J. Tian, et al., Sci. Total Environ. 798 (2021) 149379.
doi: 10.1016/j.scitotenv.2021.149379
M. Valcke, N. Ouellet, M. Dubé, et al., Toxicol. Lett. 312 (2019) 148–156.
doi: 10.1016/j.toxlet.2019.05.014
M.Y. Xu, P. Wang, Y.J. Sun, Y.J. Wu, Toxicology 384 (2017) 50–58.
doi: 10.1016/j.tox.2017.04.008
T. Zeng, W. Guo, L. Jiang, et al., Sci. Total Environ. 801 (2021) 149803.
doi: 10.1016/j.scitotenv.2021.149803
L. Xiang, J. Nie, L. Wang, et al., Chin. Chem. Lett. 32 (2021) 2197–2202.
doi: 10.1016/j.cclet.2020.12.042
H. Luan, W. Gu, H. Li, et al., J. Transl. Med. 19 (2021) 1–10.
doi: 10.1186/s12967-020-02683-4
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Zonglin Li , Shihua Zou , Zining Wang , Georgeta Postole , Liang Hu , Hongying Zhao . Machine learning in electrochemical oxidation process: A mini-review. Chinese Chemical Letters, 2025, 36(8): 110526-. doi: 10.1016/j.cclet.2024.110526
Yunzhe Zheng , Si Sun , Jiali Liu , Qingyu Zhao , Heng Zhang , Jing Zhang , Peng Zhou , Zhaokun Xiong , Chuan-Shu He , Bo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722
Zixing Xu , Ruiying Chen , Chuanming Hao , Qionghong Xie , Chunhui Deng , Nianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975
Lu Li , Jianing Shen , Qinkun Xiao , Chaozheng He , Jinzhou Zheng , Chaoqin Chu , Chen Chen . Stable crystal structure prediction using machine learning-based formation energy and empirical potential function. Chinese Chemical Letters, 2025, 36(11): 110421-. doi: 10.1016/j.cclet.2024.110421
Han-Bin Liu , Xiaoyu Cheng , Zhou Guo , Juan Yang , Fuwen Tan , Donghui Lan , Jian-Ping Tan , Bing Yi , Weixin Zhai , Qing-Hui Guo . CrownBind-IA: A machine learning model predicting binding constants between crown ethers and alkali metal ions. Chinese Chemical Letters, 2025, 36(12): 111149-. doi: 10.1016/j.cclet.2025.111149
Xu He , Wenjie Gao , Jinglei Xu , Zhanjun Cheng , Wenchao Peng , Beibei Yan , Guanyi Chen , Ning Li . Machine learning-assisted construction of C=O and pyridinic N active sites in sludge-based catalysts. Chinese Chemical Letters, 2025, 36(12): 111019-. doi: 10.1016/j.cclet.2025.111019
Jieyu Liu , Junze Zhang , Haigang Deng , Shuoao Wang , Xingxing Jiang , Li Wang , Changhong Wang . Understanding the activity origin of Pd-anchored single-atom alloy catalysts for NO-to-NH3 conversion by DFT studies and machine learning. Chinese Chemical Letters, 2025, 36(12): 110656-. doi: 10.1016/j.cclet.2024.110656
Hao Li , Hanzhi Lu , Linlin Hu , Xueli Zhang , Hua Shao , Fulun Li , Yanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342
Xi Xue , Kai Chen , Hanyu Sun , Xiangying Liu , Xue Liu , Shize Li , Jingjie Yan , Yu Peng , Mohammad S. Mubarak , Ahmed Al-Harrasi , Hai-Yu Hu , Yafeng Deng , Xiandao Pan , Xiaojian Wang . Bidirectional Chemical Intelligent Net: A unified deep learning–based framework for predicting chemical reaction. Chinese Chemical Letters, 2025, 36(11): 110968-. doi: 10.1016/j.cclet.2025.110968
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Xiaoxiao Wang , Bolun Wang , Fenfen Ji , Jie Yan , Jiacheng Fang , Doudou Zhang , Ji Xu , Jing Ji , Xinran Hao , Hemi Luan , Yanjun Hong , Shulan Qiu , Min Li , Zhu Yang , Wenlan Liu , Xiaodong Cai , Zongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
Xiangyue Li , Dexin Zhu , Kunmin Pan , Xiaoye Zhou , Jiaming Zhu , Yingxue Wang , Yongpeng Ren , Hong-Hui Wu . Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 109870-. doi: 10.1016/j.cclet.2024.109870
Yicheng Li , Qian Liu , Tianhao Li , Hao Bi , Zhurui Shen . Recent achievements in rare earth modified metal oxides for environmental and energy applications: A review. Chinese Chemical Letters, 2025, 36(9): 110698-. doi: 10.1016/j.cclet.2024.110698
Xibao Li , Yiyang Wan , Fang Deng , Yingtang Zhou , Pinghua Chen , Fan Dong , Jizhou Jiang . Advances in Z-scheme and S-scheme heterojunctions for photocatalytic and photoelectrocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(10): 111418-. doi: 10.1016/j.cclet.2025.111418
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813