Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles
-
* Corresponding author.
E-mail address: qianjinchen@dhu.edu.cn (Q. Chen).
1 These authors contributed equally to this work.
Citation:
Yun Shan, Xiaoli Deng, Xiaoxi Lu, Cong Gao, Yingjian Li, Qianjin Chen. Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles[J]. Chinese Chemical Letters,
;2022, 33(12): 5158-5161.
doi:
10.1016/j.cclet.2022.03.010
P. Strasser, M. Gliech, S. Kuehl, T. Moeller, Chem. Soc. Rev. 47 (2018) 715–735.
doi: 10.1039/C7CS00759K
D. Voiry, M. Chhowalla, Y. Gogotsi, et al., ACS Nano 12 (2018) 9635–9638.
doi: 10.1021/acsnano.8b07700
Q. Zhang, H. Wang, ACS Catal. 4 (2014) 4027–4033.
doi: 10.1021/cs501445h
S.M. Oja, D.A. Robinson, N.J. Vitti, et al., J. Am. Chem. Soc. 139 (2017) 708–718.
doi: 10.1021/jacs.6b11143
Y. Wang, S.A. Skaanvik, X. Xiong, S. Wang, M. Dong, Matter 4 (2021) 3483–3514.
doi: 10.1016/j.matt.2021.09.024
M.V. Mirkin, T. Sun, Y. Yu, M. Zhou, Acc. Chem. Res. 49 (2016) 2328–2335.
doi: 10.1021/acs.accounts.6b00294
S.E.F. Kleijn, S.C.S. Lai, M.T.M. Koper, P.R. Unwin, Angew. Chem. Int. Ed. 53 (2014) 3558–3586.
doi: 10.1002/anie.201306828
F.T. Patrice, K. Qiu, Y.L. Ying, Y.T. Long, Annu. Rev. Anal. Chem. 12 (2019) 347–370.
doi: 10.1146/annurev-anchem-061318-114902
T.J. Anderson, B. Zhang, Acc. Chem. Res. 49 (2016) 2625–2631.
doi: 10.1021/acs.accounts.6b00334
H. Ma, J.F. Chen, H.F. Wang, et al., Nat. Commun. 11 (2020) 2307.
doi: 10.1038/s41467-020-16149-0
P.A. Defnet, B. Zhang, J. Am. Chem. Soc. 143 (2021) 16154–16162.
doi: 10.1021/jacs.1c07164
C.G. Williams, M.A. Edwards, A.L. Colley, J.V. Macpherson, P.R. Unwin, Anal. Chem. 81 (2009) 2486–2495.
doi: 10.1021/ac802114r
O.J. Wahab, M. Kang, P.R. Unwin, Curr. Opin. Electrochem. 22 (2020) 120–128.
doi: 10.1016/j.coelec.2020.04.018
Y. Liu, C. Jin, Y. Liu, et al., ACS Sens. 6 (2021) 355–363.
doi: 10.1021/acssensors.0c00913
Y. Liu, X. Lu, Y. Peng, Q. Chen, Anal. Chem. 93 (2021) 12337–12345.
doi: 10.1021/acs.analchem.1c02099
C.L. Bentley, M. Kang, P.R. Unwin, J. Am. Chem. Soc. 139 (2017) 16813–16821.
doi: 10.1021/jacs.7b09355
X. Lu, M. Li, Y. Peng, et al., J. Am. Chem. Soc. 143 (2021) 16925–16929.
doi: 10.1021/jacs.1c08592
T. Tarnev, H.B. Aiyappa, A. Botz, et al., Angew. Chem. Int. Ed. 58 (2019) 14265–14269.
doi: 10.1002/anie.201908021
C.H. Chen, L. Jacobse, K. McKelvey, et al., Anal. Chem. 87 (2015) 5782–5789.
doi: 10.1021/acs.analchem.5b00988
Y. Wang, E. Gordon, H. Ren, Anal. Chem. 92 (2020) 2859–2865.
doi: 10.1021/acs.analchem.9b05502
R.G. Mariano, M. Kang, O.J. Wahab, et al., Nat. Mater. 20 (2021) 1000–1006.
doi: 10.1038/s41563-021-00958-9
J. Ustarroz, I.M. Ornelas, G. Zhang, et al., ACS Catal. 8 (2018) 6775–6790.
doi: 10.1021/acscatal.8b00553
H. Zheng, M. Li, J. Chen, et al., Chin. Chem. Lett. 33 (2022) 1450–1454.
doi: 10.1016/j.cclet.2021.08.062
M. Choi, N.P. Siepser, S. Jeong, et al., Nano Lett. 20 (2020) 1233–1239.
doi: 10.1021/acs.nanolett.9b04640
S. Sun, X. Zhang, Q. Yang, et al., Prog. Mater. Sci. 96 (2018) 111–173.
doi: 10.1016/j.pmatsci.2018.03.006
T.N. Saada, L. Pang, K. Sravan Kumar, et al., Electrochim. Acta 390 (2021) 138810.
doi: 10.1016/j.electacta.2021.138810
H. Xu, J.X. Feng, Y.X. Tong, G.R. Li, ACS Catal. 7 (2017) 986–991.
doi: 10.1021/acscatal.6b02911
Q. Li, P. Xu, B. Zhang, et al., J. Phys. Chem. C 117 (2013) 13872–13878.
F.A.C. Pastrián, A.G.M. da Silva, A.H.B. Dourado, et al., ACS Catal. 8 (2018) 6265–6272.
doi: 10.1021/acscatal.8b00726
Y. Shang, L. Guo, Adv. Sci. 2 (2015) 1500140.
doi: 10.1002/advs.201500140
Y.A. Wu, I. McNulty, C. Liu, et al., Nat. Energy 4 (2019) 957–968.
doi: 10.1038/s41560-019-0490-3
Y. Gao, Q. Wu, X. Liang, et al., Adv. Sci. 7 (2020) 1902820.
doi: 10.1002/advs.201902820
X. Liang, L. Gao, S. Yang, J. Sun, Adv. Mater. 21 (2009) 2068–2071.
doi: 10.1002/adma.200802783
W. Wei, T. Yuan, W. Jiang, et al., J. Am. Chem. Soc. 142 (2020) 14307–14313.
doi: 10.1021/jacs.0c06171
C.H. Kuo, Y.C. Yang, S. Gwo, M.H. Huang, J. Am. Chem. Soc. 133 (2011) 1052–1057.
doi: 10.1021/ja109182y
C.S. Tan, S.C. Hsu, W.H. Ke, L.J. Chen, M.H. Huang, Nano Lett. 15 (2015) 2155–2160.
doi: 10.1021/acs.nanolett.5b00150
S.C. Wu, C.S. Tan, M.H. Huang, Adv. Funct. Mater. 27 (2017) 1604635.
doi: 10.1002/adfm.201604635
T.N. Chen, J.C. Kao, X.Y. Zhong, et al., ACS Cent. Sci. 6 (2020) 984–994.
doi: 10.1021/acscentsci.0c00367
T. Quast, S. Varhade, S. Saddeler, et al., Angew. Chem. Int. Ed. 60 (2021) 23444–23450.
doi: 10.1002/anie.202109201
Ai Sheng Huang , Guo Hua Zhao , Hong Xu Li . High quality Sb-doped SnO2 electrodes with high oxygen evolution potential prepared by in situ hydrothermal synthesis method. Chinese Chemical Letters, 2007, 18(8): 997-1000. doi: 10.1016/j.cclet.2007.05.034
Cheng Wang , Liujun Jin , Hongyuan Shang , Hui Xu , Yukihide Shiraishi , Yukou Du . Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chinese Chemical Letters, 2021, 32(7): 2108-2116. doi: 10.1016/j.cclet.2020.11.051
Xianghua An , Dongyoon Shin , Joey D. Ocon , Jae Kwang Lee , Young-il Son , Jaeyoung Lee . Electrocatalytic oxygen evolution reaction at a FeNi composite on a carbon nanofiber matrix in alkaline media. Chinese Journal of Catalysis, 2014, 35(6): 891-895. doi: 10.1016/S1872-2067(14)60127-3
Jin Ling , Pang Huan . CoP@SiO2nanoreactors: A core-shell structure for efficient electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2020, 31(9): 2300-2304. doi: 10.1016/j.cclet.2020.03.041
LUO Pan , SUN Fang , DENG Ju , XU Haitao , ZHANG Huijuan , WANG Yu . Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2018, 34(12): 1397-1404. doi: 10.3866/PKU.WHXB201804022
Xinran Li , Changli Wang , Yang-Yi Liu , Huaiguo Xue , Huan Pang , Qiang Xu . Cu-alanine complex-derived CuO electrocatalysts with hierarchical nanostructures for efficient oxygen evolution. Chinese Chemical Letters, 2021, 32(7): 2239-2242. doi: 10.1016/j.cclet.2020.12.037
Pu Shi , Xiaodi Cheng , Siliu Lyu . Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chinese Chemical Letters, 2021, 32(3): 1210-1214. doi: 10.1016/j.cclet.2020.09.030
Kun Chen , Keke Mao , Yu Bai , Delong Duan , Shuangming Chen , Chengming Wang , Ning Zhang , Ran Long , Xiaojun Wu , Li Song , Yujie Xiong . Phosphate-induced interfacial electronic engineering in VPO4-Ni2P heterostructure for improved electrochemical water oxidation. Chinese Chemical Letters, 2022, 33(1): 452-456. doi: 10.1016/j.cclet.2021.05.011
Huaping Wang , Sheng Zhu , Jiwei Deng , Wenchao Zhang , Yuezhan Feng , Jianmin Ma . Transition metal carbides in electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2021, 32(1): 291-298. doi: 10.1016/j.cclet.2020.02.018
Yurong Li , Qifei Guo , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . A novel ball-in-ball hollow oxygen-incorporating cobalt sulfide spheres as high-efficient electrocatalyst for oxygen evolution reaction. Chinese Chemical Letters, 2021, 32(2): 755-760. doi: 10.1016/j.cclet.2020.05.012
Cao Feng , Pan Guoxiang , Zhang Yujian , Xia Xinhui . Implanting Ni into N-doped puffed carbon: A new advanced electrocatalyst for oxygen evolution reaction. Chinese Chemical Letters, 2020, 31(9): 2230-2234. doi: 10.1016/j.cclet.2020.01.037
Xu Yu , Zhixin Zhao , Chengang Pei . Surface oxidized iron-nickel nanorods anchoring on graphene architectures for oxygen evolution reaction. Chinese Chemical Letters, 2021, 32(11): 3579-3583. doi: 10.1016/j.cclet.2021.03.040
Lele Lu , Qiang Li , Jia Du , Wei Shi , Peng Cheng . Bimetallic cobalt-nickel coordination polymer electrocatalysts for enhancing oxygen evolution reaction. Chinese Chemical Letters, 2022, 33(6): 2928-2932. doi: 10.1016/j.cclet.2021.10.090
He Denghong , Wu Xiaolin , Liu Wei , Lei Chaojun , Yu Chunlin , Zheng Guokui , Pan Junjie , Lei Lecheng , Zhang Xingwang . Co1-xS embedded in porous carbon derived from metal organic framework as a highly efficient electrocatalyst for oxygen evolution reaction. Chinese Chemical Letters, 2019, 30(1): 229-233. doi: 10.1016/j.cclet.2018.03.020
Mingliang Wu , Yehui Zhang , Zhanzhao Fu , Zhiyang Lyu , Qiang Li , Jinlan Wang . Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2023, 39(1): 2207007-0. doi: 10.3866/PKU.WHXB202207007
Jianan Su , Linzhou Zhuang , Shusheng Zhang , Qingju Liu , Longzhou Zhang , Guangzhi Hu . Single atom catalyst for electrocatalysis. Chinese Chemical Letters, 2021, 32(10): 2947-2962. doi: 10.1016/j.cclet.2021.03.082
Ziqi Zhang , Yin Lei , Weimin Huang . Recent progress in carbon-based materials boosting electrochemical water splitting. Chinese Chemical Letters, 2022, 33(8): 3623-3631. doi: 10.1016/j.cclet.2021.11.041
Qiuxiang Mou , Xuan Wang , Zhenhang Xu , Pnur Zul , Erlei Li , Pingping Zhao , Xinghai Liu , Houbin Li , Gongzhen Cheng . A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation. Chinese Chemical Letters, 2022, 33(1): 562-566. doi: 10.1016/j.cclet.2021.08.028
Xiao-Peng Li , Li-Rong Zheng , Si-Jie Liu , Ting Ouyang , Siyu Ye , Zhao-Qing Liu . Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chinese Chemical Letters, 2022, 33(11): 4761-4765. doi: 10.1016/j.cclet.2021.12.095
Han Pengyu , Tan Tan , Wu Fei , Cai Ping , Cheng Gongzhen , Wei Luo . Nickel-iron borate coated nickel-iron boride hybrid for highly stable and active oxygen evolution electrocatalysis. Chinese Chemical Letters, 2020, 31(9): 2469-2472. doi: 10.1016/j.cclet.2020.03.009