Zirconia prepared from UIO-66 as a support of Ru catalyst for ammonia synthesis
-
* Corresponding authors.
E-mail addresses: nj@fzu.edu.cn (J. Ni), bylin@fzu.edu.cn (B. Lin), jll@fzu.edu.cn (L. Jiang).
Citation:
Chuanfeng Zhang, Siyu Shi, Biyun Fang, Jun Ni, Jianxin Lin, Xiuyun Wang, Bingyu Lin, Lilong Jiang. Zirconia prepared from UIO-66 as a support of Ru catalyst for ammonia synthesis[J]. Chinese Chemical Letters,
;2023, 34(1): 107237.
doi:
10.1016/j.cclet.2022.02.042
V. Smil, Nature 400 (1999) 415.
doi: 10.1038/22672
J. Guo, P. Chen, Chem 3 (2017) 709–712.
doi: 10.1016/j.chempr.2017.10.004
L. Wang, M. Xia, H. Wang, et al., Joule 2 (2018) 1055–1074.
doi: 10.1016/j.joule.2018.04.017
C. Smith, A.K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 13 (2020) 331–344.
doi: 10.1039/C9EE02873K
J. Humphreys, R. Lan, S. Tao, Adv. Energy Sustainability Res. 2 (2021) 2000043.
doi: 10.1002/aesr.202000043
B.S. Patil, Q. Wang, V. Hessel, J. Lang, Catal. Today 256 (2015) 49–66.
doi: 10.1016/j.cattod.2015.05.005
J.G. Chen, R.M. Crooks, L.C. Seefeldt, et al., Science 360 (2018) eaar6611.
doi: 10.1126/science.aar6611
J. Guo, T. Tsega, I. Lslam, et al., Chin. Chem. Lett. 31 (2020) 2487–2490.
doi: 10.1016/j.cclet.2020.02.019
Y. Wang, M. Batmunkh, H. Mao, et al., Chin. Chem. Lett. 33 (2022) 394–398.
doi: 10.1016/j.cclet.2021.05.025
S. Yuan, B. Xu, S. Li, et al., Chin. Chem. Lett. 33 (2022) 399–403.
doi: 10.1016/j.cclet.2021.06.077
J. Kong, M.-.S. Kim, R. Akbar, et al., ACS Appl. Mater. Interfaces 13 (2021) 24593–24603.
doi: 10.1021/acsami.1c00850
N. Saadatjou, A. Jafari, S. Sahebdelfar, Chem. Eng. Commun. 202 (2014) 420–448.
M. Hara, M. Kitano, H. Hosono, ACS Catal. 7 (2017) 2313–2324.
doi: 10.1021/acscatal.6b03357
V.S. Marakatti, E.M. Gaigneaux, ChemCatChem 12 (2020) 5838–5857.
doi: 10.1002/cctc.202001141
7 J.S.J. Hargreaves, Heterogeneously catalyzed ammonia synthesis, in: S.D. Jackson (Ed.), Hydrogenation, De Gruyter, 2018, pp. 173–192.
D. Brown, T. Edmonds, R. Joyner, et al., Catal. Lett. 144 (2014) 545–552.
doi: 10.1007/s10562-014-1226-4
B. Lin, Y. Guo, J. Lin, et al., Appl. Catal. A 541 (2017) 1–7.
doi: 10.1016/j.apcata.2017.04.020
K.N. Iost, V.A. Borisov, V.L. Temerev, et al., Surf. Interfaces 12 (2018) 95–101.
doi: 10.1016/j.surfin.2018.05.003
K. Aika, A. Ohya, A. Ozaki, et al., J. Catal. 92 (1985) 305–311.
doi: 10.1016/0021-9517(85)90265-9
H. Liu, X. Dong, J. Xia, et al., Trans. Tianjin Univ. 26 (2020) 362–372.
doi: 10.1007/s12209-019-00225-8
H. Du, J. Fan, C. Miao, et al., Trans. Tianjin Univ. 27 (2021) 24–41.
doi: 10.1007/s12209-020-00277-1
B. Fang, F. Liu, C. Zhang, et al., ACS Sustainable Chem. Eng. 9 (2021) 8962–8969.
doi: 10.1021/acssuschemeng.1c01275
B. Lin, Y. Wu, B. Fang, et al., Chin. J. Catal. 42 (2021) 1712–1723.
doi: 10.1016/S1872-2067(20)63787-1
Y. Wu, C. Li, B. Fang, et al., Chem. Commun. 56 (2020) 1141–1144.
doi: 10.1039/C9CC07385J
Z.-.P. Liu, P. Hu, M.-.H. Lee, J. Chem. Phys. 119 (2003) 6282–6289.
doi: 10.1063/1.1602054
G. Ertl, Angew. Chem. Int. Ed. 47 (2008) 3524–3535.
doi: 10.1002/anie.200800480
K. Aika, K. Tamaru, Ammonia synthesis over non-iron catalysts and related phenomena, in: A. Nielsen (Ed.), Ammonia: Catalysis and Manufacture, Springer-Verlag, Berlin, 1995, pp. 103–148.
S. Wu, Y.K. Peng, T. Chen, et al., ACS Catal. 10 (2020) 5614–5622.
doi: 10.1021/acscatal.0c00954
B. Lin, L. Heng, B. Fang, et al., ACS Catal. 9 (2019) 1635–1644.
doi: 10.1021/acscatal.8b03554
C. Li, F. Liu, Y. Shi, et al., ACS Sustainable Chem. Eng. 9 (2021) 4885–4893.
doi: 10.1021/acssuschemeng.1c00468
C. Li, Y. Shi, Z. Zhang, et al., J. Energy. Chem. 60 (2021) 403–409.
doi: 10.1016/j.jechem.2021.01.031
B. Lin, B. Fang, Y. Wu, et al., ACS Catal. 11 (2021) 1331–1339.
doi: 10.1021/acscatal.0c05074
X. Wang, W. Chen, L. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 9419–9422.
doi: 10.1021/jacs.7b01686
Y. Chen, H. Xia, D. Zhang, et al., RSC Adv. 4 (2014) 8039–8043.
doi: 10.1039/C3RA47967F
G. Cerrato, S. Bordiga, S. Barbera, C. Morterra, Appl. Surf. Sci. 115 (1997) 53–65.
doi: 10.1016/S0169-4332(96)00586-7
S. Riaz, M. Bashir, S. Naseem, J. Sol-Gel Sci. Tech. 74 (2015) 275–280.
doi: 10.1007/s10971-015-3707-3
S. Foraita, J.L. Fulton, Z.A. Chase, et al., Chem. Eur. J. 21 (2015) 2423–2434.
doi: 10.1002/chem.201405312
A. Cuesta, P. Dhamelincourt, J. Laureyns, et al., Carbon 32 (1994) 1523–1532.
doi: 10.1016/0008-6223(94)90148-1
A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095–14107.
doi: 10.1103/PhysRevB.61.14095
A.C. Ferrari, D.M. Basko, Nat. Nano 8 (2013) 235–246.
doi: 10.1038/nnano.2013.46
B. Lin, Y. Guo, C. Cao, et al., Catal. Today 316 (2018) 230–236.
doi: 10.1016/j.cattod.2018.01.008
N. Liu, M. Xu, Y. Yang, et al., ACS Catal. 9 (2019) 2707–2717.
doi: 10.1021/acscatal.8b04913
S. Zhang, Z. Xia, T. Ni, et al., J. Catal. 359 (2018) 101–111.
doi: 10.1016/j.jcat.2018.01.004
B. Lin, L. Heng, H. Yin, et al., Ind. Eng. Chem. Res. 58 (2019) 10285–10295.
doi: 10.1021/acs.iecr.9b01610
B. Lin, Y. Liu, L. Heng, et al., Ind. Eng. Chem. Res. 57 (2018) 9127–9135.
doi: 10.1021/acs.iecr.8b02126
NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 (Web Version).
H. Huang, Q. Dai, X. Wang, Appl. Catal. B 158-159 (2014) 96–105.
C. Elmasides, D.I. Kondarides, W. Grünert, X.E. Verykios, J. Phys. Chem. B 103 (1999) 5227–5239.
doi: 10.1021/jp9842291
M. Kitano, Y. Inoue, Y. Yamazaki, et al., Nat. Chem. 4 (2012) 934–940.
doi: 10.1038/nchem.1476
Y. Inoue, M. Kitano, K. Kishida, et al., ACS Catal. 6 (2016) 7577–7584.
doi: 10.1021/acscatal.6b01940
Y. Ogura, K. Sato, S.-i. Miyahara, et al., Chem. Sci. 9 (2018) 2230–2237.
doi: 10.1039/C7SC05343F
F. Rosowski, A. Hornung, O. Hinrichsen, et al., Appl. Catal. A 151 (1997) 443–460.
doi: 10.1016/S0926-860X(96)00304-3
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Hang Wang , Qi Wang , Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437
Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382