Citation: Jun Li, Mingwei Cui, Huan Yang, Jing Chen, Shibo Cheng. Ligand-field regulated superalkali behavior of the aluminum-based clusters with distinct shell occupancy[J]. Chinese Chemical Letters, ;2022, 33(12): 5147-5151. doi: 10.1016/j.cclet.2022.02.039 shu

Ligand-field regulated superalkali behavior of the aluminum-based clusters with distinct shell occupancy

    * Corresponding author.
    E-mail address: shibocheng@sdu.edu.cn (S. Cheng).
    1 These authors contributed equally to this work.
  • Received Date: 7 January 2022
    Revised Date: 10 February 2022
    Accepted Date: 15 February 2022
    Available Online: 19 February 2022

Figures(4)

  • Protecting clusters from coalescing by ligands has been universally adopted in the chemical synthesis of atomically precise clusters. Apart from the stabilization role, the effect of ligands on the electronic properties of cluster cores in constructing superatoms, however, has not been well understood. In this letter, a comprehensive theoretical study about the effect of an organic ligand, methylated N-heterocyclic carbene (C5N2H8), on the geometrical and electronic properties of the aluminum-based clusters XAl12 (X = Al, C and P) featuring different valence electron shells was conducted by utilizing the density functional theory (DFT) calculations. It was observed that the ligand can dramatically alter the electronic properties of these aluminum-based clusters while maintaining their structural stability. More intriguingly, different from classical superatom design strategies, the proposed ligation strategy was evidenced to possess the capability of remarkably reducing the ionization potentials (IP) of these clusters forming the ligated superalkalis, which is regardless of their shell occupancy. The charge transfer complex formed during the ligation process, which regulates the electronic spectrum through the electrostatic Coulomb potential, was suggested to be responsible for such an IP drop. The ligation strategy highlighted here may provide promising opportunities in realizing the superatom synthesis in the liquid phase.
  • 加载中
    1. [1]

      J.J. Zhao, Q. Du, S. Zhou, V. Kumar, Chem. Rev. 120 (2020) 9021–9163.  doi: 10.1021/acs.chemrev.9b00651

    2. [2]

      M.T. Huynh, A.N. Alexandrova, J. Phys. Chem. Lett. 2 (2011) 2046–2051.  doi: 10.1021/jz200865u

    3. [3]

      D.E. Bergeron, P.J. Roach, A.W. Castleman Jr., N. Hones, S.N. Khanna, Science 307 (2005) 231–235.  doi: 10.1126/science.1105820

    4. [4]

      S.N. Khanna, P. Jena, Phys. Rev. Lett. 69 (1992) 1664–1667.  doi: 10.1103/PhysRevLett.69.1664

    5. [5]

      P. Jena, Q. Sun, Chem. Rev. 118 (2018) 5755–5870.  doi: 10.1021/acs.chemrev.7b00524

    6. [6]

      A.W. Castleman Jr., J. Phys. Chem. Lett. 2 (2011) 1062–1069.  doi: 10.1021/jz200215s

    7. [7]

      Q. Du, B. Yin, S. Zhou, Z. Luo, J.J. Zhao, Chin. Chem. Lett. 33 (2022) 995–1000.  doi: 10.1016/j.cclet.2021.08.127

    8. [8]

      Z. Luo, A.W. Castleman Jr., Acc. Chem. Res. 47 (2014) 2931–2940.  doi: 10.1021/ar5001583

    9. [9]

      L. Li, L. Shi, X. Yu, et al., Chin. Chem. Lett. 30 (2019) 1147–1152.  doi: 10.1016/j.cclet.2019.03.047

    10. [10]

      J. Li, H.C. Huang, J. Wang, et al., Nanoscale 11 (2019) 19903–19911.  doi: 10.1039/C9NR05613K

    11. [11]

      Q. Liu, P. Fan, Y. Hu, F. Wang, L. Cheng, Phys. Chem. Chem. Phys. 23 (2021) 10946–10952.  doi: 10.1039/D1CP00589H

    12. [12]

      Y. Zhao, J. Wang, H.C. Huang, et al., J. Phys. Chem. Lett. 11 (2020) 1093–1099.  doi: 10.1021/acs.jpclett.9b03794

    13. [13]

      A.C. Reber, D. Bista, V. Chauhan, S.N. Khanna, J. Phys. Chem. C 123 (2019) 8983–8989.  doi: 10.1021/acs.jpcc.9b00039

    14. [14]

      D.E. Bergeron, A.W. Castleman Jr., T. Morisato, S.N. Khanna, Science 304 (2004) 84–87.  doi: 10.1126/science.1093902

    15. [15]

      D. Samanta, M.M. Wu, P. Jena, J. Phys. Chem. Lett. 2 (2011) 3027–3031.  doi: 10.1021/jz2014264

    16. [16]

      S.B. Cheng, C. Berkdemir, A.W. Castleman Jr., Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 4941–4945.  doi: 10.1073/pnas.1504714112

    17. [17]

      J.U. Reveles, P.A. Clayborne, A.C. Reber, et al., Nat. Chem. 1 (2009) 310–315.  doi: 10.1038/nchem.249

    18. [18]

      N.M. Tam, N.T. Mai, H.T. Pham, N.T. Cuong, N.T. Tung, J. Phys. Chem. C 122 (2018) 16256–16264.  doi: 10.1021/acs.jpcc.8b03378

    19. [19]

      W.D. Knight, K. Clemenger, W.A. de Heer, et al., Phys. Rev. Lett. 52 (1984) 2141–2143.  doi: 10.1103/PhysRevLett.52.2141

    20. [20]

      G.N. Lewis, J. Am. Chem. Soc. 38 (1916) 762–785.  doi: 10.1021/ja02261a002

    21. [21]

      I. Langmuir, J. Am. Chem. Soc. 41 (1919) 868–934.  doi: 10.1021/ja02227a002

    22. [22]

      K. Wade, Adv. Inorg. Chem. Radiochem. 18 (1976) 1–66.

    23. [23]

      B. Pathak, D. Samanta, R. Ahuja, P. Jena, ChemPhysChem 12 (2011) 2423–2428.  doi: 10.1002/cphc.201100320

    24. [24]

      I. Langmuir, Science 54 (1921) 59–67.  doi: 10.1126/science.54.1386.59

    25. [25]

      E. Hückel, Z. Physik 70 (1931) 204–286.  doi: 10.1007/BF01339530

    26. [26]

      N.C. Baird, J. Am. Chem. Soc. 94 (1972) 4941–4948.  doi: 10.1021/ja00769a025

    27. [27]

      K. Hirata, K. Yamashita, S. Muramatsu, et al., Nanoscale 9 (2017) 13409–13412.  doi: 10.1039/C7NR04641C

    28. [28]

      M. Liu, X. Ren, X. Liu, et al., Chin. Chem. Lett. 31 (2020) 3117–3120.  doi: 10.1016/j.cclet.2020.06.024

    29. [29]

      G.X. Liu, A. Pinkard, S.M. Ciborowski, et al., Chem. Sci. 10 (2019) 1760–1766.  doi: 10.1039/C8SC03862G

    30. [30]

      X. Fu, X. Lin, X. Ren, et al., Chin. Chem. Lett. 32 (2021) 565–568.  doi: 10.1016/j.cclet.2020.02.041

    31. [31]

      J. Yan, B.K. Teo, N. Zheng, Acc. Chem. Res. 51 (2018) 3084–3093.  doi: 10.1021/acs.accounts.8b00371

    32. [32]

      J. Li, Y. Zhao, Y.F. Bu, et al., Chem. Phys. Lett. 754 (2020) 137709.  doi: 10.1016/j.cplett.2020.137709

    33. [33]

      J. Wang, Y. Zhao, J. Li, et al., Phys. Chem. Chem. Phys. 21 (2019) 14865–14872.  doi: 10.1039/C9CP01870K

    34. [34]

      J. Li, J. Wang, J. Chen, Y. Bu, S.B. Cheng, CCS Chem. 2 (2020) 1913–1920.

    35. [35]

      Y. Zhao, J. Chen, H. Yang, Q. Wei, S.B. Cheng, Chem. Phys. Lett. 754 (2020) 137703.  doi: 10.1016/j.cplett.2020.137703

    36. [36]

      V. Chauhan, A.C. Reber, S.N. Khanna, Nat. Commun. 9 (2018) 2357.  doi: 10.1038/s41467-018-04799-0

    37. [37]

      N. Hou, D. Wu, Y. Li, Z.R. Li, J. Am. Chem. Soc. 136 (2014) 2921–2927.  doi: 10.1021/ja411755t

    38. [38]

      T. Watanabe, K. Koyasu, T. Tsukuda, J. Phys. Chem. C 119 (2015) 10904–10909.  doi: 10.1021/jp5107718

    39. [39]

      C.A. Smith, M.R. Narouz, P.A. Lummis, et al., Chem. Rev. 119 (2019) 4986–5056.  doi: 10.1021/acs.chemrev.8b00514

    40. [40]

      C.M. Crudden, D.P. Allen, Coord. Chem. Rev. 248 (2004) 2247–2273.  doi: 10.1016/j.ccr.2004.05.013

    41. [41]

      H. Jacobsen, A. Correa, A. Poater, C. Costabile, L. Cavallo, Coord. Chem. Rev. 253 (2009) 687–703.  doi: 10.1016/j.ccr.2008.06.006

    42. [42]

      M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al. Gaussian 09, Revision E. 01; Gaussian, Inc. : Wallingford, CT, 2009.

    43. [43]

      C. Adamo, V. Barone, J. Chem. Phys. 110 (1999) 6158–6170.  doi: 10.1063/1.478522

    44. [44]

      F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297–3305.  doi: 10.1039/b508541a

    45. [45]

      X. Li, L.S. Wang, Phys. Rev. B 65 (2002) 153404.  doi: 10.1103/PhysRevB.65.153404

    46. [46]

      A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899–926.  doi: 10.1021/cr00088a005

    47. [47]

      J.E. Carpenter, F. Weinhold, J. Mol. Struct. Theochem. 169 (1988) 41–62.  doi: 10.1016/0166-1280(88)80248-3

    48. [48]

      T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580–592.  doi: 10.1002/jcc.22885

    49. [49]

      W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14 (1996) 33–38.  doi: 10.1016/0263-7855(96)00018-5

    50. [50]

      A.C. Reber, S.N. Khanna, P.J. Roach, et al., J. Am. Chem. Soc. 129 (2007) 16098–16101.  doi: 10.1021/ja075998d

    51. [51]

      X. Li, A. Grubisic, S.T. Stokes, et al., Science 315 (2007) 356–358.  doi: 10.1126/science.1133767

    52. [52]

      S.B. Cheng, C. Berkdemir, A.W. Castleman Jr., Phys. Chem. Chem. Phys. 16 (2014) 533–539.  doi: 10.1039/C3CP53245C

    53. [53]

      Y. Wang, J.M. Holden, A.M. Rao, et al., Phys. Rev. B 45 (1992) 14396–14399.  doi: 10.1103/PhysRevB.45.14396

  • 加载中
    1. [1]

      Wenjuan YangYating ZhuJunjun LiZheng ChenFarhat NosheenQitao ZhangZhicheng Zhang . Understanding the dehydrogenation mechanism over iron nanoparticles catalysts based on density functional theory. Chinese Chemical Letters, 2021, 32(1): 286-290. doi: 10.1016/j.cclet.2020.10.040

    2. [2]

      Ai Ping FU Dong Mei DU Zheng Yu ZHOU . Density Functional Study on the Vibrational Frequencies of Hydrazoic Acid and Methyl Azide. Chinese Chemical Letters, 1999, 10(7): 619-622.

    3. [3]

      Zheng Guo Huang Li Zhou En Cui Yang . A density functional theoretical studies on the structures and aromaticities of (CH)n(BCO)6-n (n=0-6). Chinese Chemical Letters, 2008, 19(11): 1383-1386. doi: 10.1016/j.cclet.2008.07.025

    4. [4]

      AYERS Paul W.LEVY Mel . Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number. Acta Physico-Chimica Sinica, 2018, 34(6): 625-630. doi: 10.3866/PKU.WHXB201711071

    5. [5]

      Dong Met DU Ai Ping FU Zheng Yu ZHOU . Theory Study on Structures and Vibrational Frequencies of Pyruvic acid. Chinese Chemical Letters, 2000, 11(5): 447-450.

    6. [6]

      Fang YiGong Xueqing . Genetic algorithm aided density functional theory simulations unravel the kinetic nature of Au(100) in catalytic CO oxidation. Chinese Chemical Letters, 2019, 30(6): 1346-1350. doi: 10.1016/j.cclet.2018.12.025

    7. [7]

      FARMANZADEH DavoodAMIRAZAMI Abolfazl . Electric Field Dependence of (4, 0) Zigzag Model Single-Walled Carbon Nanotube. Acta Physico-Chimica Sinica, 2009, 25(11): 2343-2349. doi: 10.3866/PKU.WHXB20091105

    8. [8]

      FAN Yu-BoGAO Yi-Qin . Coorperativity between Metals, Ligands and Solvent: a DFT Study on the Mechanism of a Dizinc Complex-Mediated Phosphodiester Cleavage. Acta Physico-Chimica Sinica, 2010, 26(04): 1034-1042. doi: 10.3866/PKU.WHXB20100447

    9. [9]

      AL-SEHEMI Abdullah G.Al-AMRI Reem S. AbdulazizIRFAN Ahmad . Characterization and Density Functional Theory Investigations of 3-Monoacylaminoquinazolinone Derivatives. Acta Physico-Chimica Sinica, 2013, 29(01): 55-63. doi: 10.3866/PKU.WHXB201210151

    10. [10]

      Yuan-Ye JiangHai-Zhu YuJing Shi . Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes. Chinese Chemical Letters, 2015, 26(1): 58-62. doi: 10.1016/j.cclet.2014.10.021

    11. [11]

      Dong-Hai YuJing-Na ShaoRong-Xing HeMing Li . Mechanism of trifl uoromethylation reactions with well-defi ned NHC copper trifl uoromethyl complexes and iodobenzene: A computational exploration. Chinese Chemical Letters, 2015, 26(5): 564-566. doi: 10.1016/j.cclet.2014.12.017

    12. [12]

      Chuan Lu Wan Yong Ma Yu Zhen Fang Jian Hua Zhou . Theoretical studies of insertion reactions of singlet germylene into aryl C-Cl bond of 1-chlorobenzene. Chinese Chemical Letters, 2009, 20(3): 374-377. doi: 10.1016/j.cclet.2008.12.007

    13. [13]

      Yu Zhen Fang Chuan Lu Jian Hua Zhou Wan Yong Ma . Theoretical study on the synthesis reaction mechanism of trichlorogermyl crylic acid. Chinese Chemical Letters, 2008, 19(4): 493-496. doi: 10.1016/j.cclet.2008.01.036

    14. [14]

      You Gui Chen Lin Zhuang Jun Tao Lu . A combined electrochemical and DFT study of the lattice strain effect on the surface reactivity of Pd. Chinese Chemical Letters, 2007, 18(10): 1301-1304. doi: 10.1016/j.cclet.2007.08.006

    15. [15]

      Xiao-Ming CaoHaijin ZhouLiyang ZhaoXuning ChenPeijun Hu . Screening performance of methane activation over atomically dispersed metal catalysts on defective boron nitride monolayers: A density functional theory study. Chinese Chemical Letters, 2021, 32(6): 1972-1976. doi: 10.1016/j.cclet.2020.09.015

    16. [16]

      Yishun YangMin ZhouYanxia Xing . Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions. Acta Physico-Chimica Sinica, 2022, 38(4): 2003004-0. doi: 10.3866/PKU.WHXB202003004

    17. [17]

      Xiao-Hui SunHai-Zhu YuShu-Qi PeiZhi-Min Dang . Theoretical investigations on the thiol-thioester exchange steps of different thioesters. Chinese Chemical Letters, 2015, 26(10): 1259-1264. doi: 10.1016/j.cclet.2015.07.003

    18. [18]

      Hong Yu ZHANG Lan Fen WANG . Theoretical Investigation on Radical-Coupling Reactivity of Indolinonic Aminoxyls. Chinese Chemical Letters, 2003, 14(4): 437-440.

    19. [19]

      Jie REN Hai Yan WEI Qi Hua ZHAO Zhi Da CHEN . Theoretical Studies on the Spin Exchange Interaction in Copper(II) Complexes Coordinated with Nitronyl Nitroxide. Chinese Chemical Letters, 2003, 14(12): 1313-1316.

    20. [20]

      Dong Mei DU Ai Ping FU Zheng Yu ZHOU . Theoretical Study on the Structure and Vibrational Spectra for4-methyl-3-penten-2-one. Chinese Chemical Letters, 1999, 10(10): 835-838.

Metrics
  • PDF Downloads(1)
  • Abstract views(91)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return