TiO2-carbon porous nanostructures for immobilization and conversion of polysulfides
-
* Corresponding author.
E-mail address: ztzhang@zzu.edu.cn (Z. Zhang).
1 These authors contributed equally to this work.
Citation:
Keke Gao, Rui Xu, Yunxiang Chen, Zongtao Zhang, Jiashuo Shao, Haipeng Ji, Liying Zhang, Shasha Yi, Deliang Chen, Junhua Hu, Yanfeng Gao. TiO2-carbon porous nanostructures for immobilization and conversion of polysulfides[J]. Chinese Chemical Letters,
;2023, 34(1): 107229.
doi:
10.1016/j.cclet.2022.02.034
L.C. Zeng, W.H. Li, Y. Jiang, Y. Yu, Rare Met. 36 (2017) 339–364.
doi: 10.1007/s12598-017-0891-z
C. Wei, H. Fei, Y. Tian, et al., Chin. Chem. Lett. 31 (2020) 980–983.
doi: 10.1016/j.cclet.2019.12.033
R. Kumar, J. Liu, J.Y. Hwang, Y.K. Sun, J. Mater. Chem. A 6 (2018) 11582–11605.
doi: 10.1039/C8TA01483C
X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Electrochem. Energy Rev. 1 (2018) 239–293.
doi: 10.1007/s41918-018-0010-3
S.H. Chung, C.H. Chang, A. Manthiram, Adv. Funct. Mater. 28 (2018) 1801188.
doi: 10.1002/adfm.201801188
Q. Pang, A. Shyamsunder, B. Narayanan, et al., Nat. Energy 3 (2018) 783–791.
doi: 10.1038/s41560-018-0214-0
J. Balach, J. Linnemann, T. Jaumann, L. Giebeler, J. Mater. Chem. A 6 (2018) 23127–23168.
doi: 10.1039/C8TA07220E
X.Q. Zhang, Q. Jin, Y.L. Nan, et al., Angew. Chem. Int. Ed. 60 (2021) 15503–15509.
doi: 10.1002/anie.202103470
X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8 (2009) 500–506.
doi: 10.1038/nmat2460
X. Zhao, M. Kim, Y. Liu, et al., Carbon 128 (2018) 138–146.
doi: 10.1016/j.carbon.2017.11.025
B. Gan, K. Tang, Y. Chen, et al., J. Energy Chem. 42 (2020) 174–179.
doi: 10.1016/j.jechem.2019.06.003
F. Ai, N. Liu, W. Wang, et al., Electrochim. Acta 258 (2017) 80–89.
doi: 10.1016/j.electacta.2017.10.076
P. Wang, Z. Zhang, X. Yan, et al., J. Mater. Chem. A 6 (2018) 14178–14187.
doi: 10.1039/C8TA04214D
X. Zhou, R. Meng, N. Zhong, et al., Small Methods 5 (2021) 2100571.
doi: 10.1002/smtd.202100571
J. Wu, S. Li, P. Yang, et al., J. Alloys Compd. 783 (2019) 279–285.
doi: 10.1016/j.jallcom.2018.12.316
D. Cai, B.K. Liu, D.H. Zhu, et al., Adv. Energy Mater. 10 (2020) 1904273.
doi: 10.1002/aenm.201904273
X. Liang, A. Garsuch, L.F. Nazar, Angew. Chem. Int. Ed. 54 (2015) 3907–3911.
doi: 10.1002/anie.201410174
D.S. Wu, F. Shi, G. Zhou, et al., Energy Stor. Mater. 13 (2018) 241–246.
H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Adv. Energy Mater. 7 (2017) 1700260.
doi: 10.1002/aenm.201700260
L. Fan, M. Li, X. Li, et al., Joule 3 (2019) 361–386.
doi: 10.1016/j.joule.2019.01.003
C.L. Lee, I.D. Kim, Nanoscale 7 (2015) 10362–10367.
doi: 10.1039/C5NR02637G
R. Fang, S. Zhao, S. Pei, et al., ACS Nano 10 (2016) 8676–8682.
doi: 10.1021/acsnano.6b04019
F. Pei, L. Lin, A. Fu, et al., Joule 2 (2018) 323–336.
doi: 10.1016/j.joule.2017.12.003
X. Li, Y. Zhang, S. Wang, et al., Nano Lett. 20 (2020) 6922–6929.
doi: 10.1021/acs.nanolett.0c03088
S. Zhang, N. Zhong, X. Zhou, et al., Nano-Micro Lett. 12 (2020) 112.
doi: 10.1007/s40820-020-00449-7
J. Wang, P. Zhai, T. Zhao, et al., Electrochim. Acta 320 (2019) 134558.
doi: 10.1016/j.electacta.2019.134558
M. Zhen, S.Q. Guo, B. Shen, ACS Sustain, Chem. Eng. 8 (2020) 13318–13327.
Z. Zhang, G. Wu, H. Ji, et al., Nanomaterials 10 (2020) 705.
doi: 10.3390/nano10040705
Z. Xiao, Z. Li, X. Meng, R. Wang, J. Mater. Chem. A 7 (2019) 22730–22743.
doi: 10.1039/C9TA08600E
Y. Dong, S. Zheng, J. Qin, et al., ACS Nano 12 (2018) 2381–2388.
doi: 10.1021/acsnano.7b07672
L. Jiao, C. Zhang, C.N. Geng, et al., Adv. Energy Mater. 9 (2019) 1900219.
doi: 10.1002/aenm.201900219
H. Tang, W.L. Li, L.M. Pan, et al., Adv. Sci. 5 (2018) 1800502.
doi: 10.1002/advs.201800502
Z. Xiao, Z. Yang, Z. Li, P. Li, R. Wang, ACS Nano 13 (2019) 3404–3412.
doi: 10.1021/acsnano.8b09296
P. Li, H. Lv, Z. Li, et al., Adv. Mater. 33 (2021) 2007803.
doi: 10.1002/adma.202007803
X. Wang, Z. Wang, L. Chen, J. Power Sources 242 (2013) 65–69.
doi: 10.1016/j.jpowsour.2013.05.063
X. Zhou, Q. Liao, T. Bai, J. Yang, J. Mater. Sci. 52 (2017) 7719–7732.
doi: 10.1007/s10853-017-1029-2
L. Ma, K.E. Hendrickson, S. Wei, L.A. Archer, Nano Today 10 (2015) 315–338.
doi: 10.1016/j.nantod.2015.04.011
M. Chen, S. Jiang, C. Huang, et al., ChemSusChem 10 (2017) 1803–1812.
doi: 10.1002/cssc.201700050
K. Gao, D. Xia, H. Ji, et al., Energy Fuels 35 (2021) 10303–10314.
doi: 10.1021/acs.energyfuels.1c01242
T. Shah, S. Halacheva, Adv. Smart Med. Textiles (2016) 119–154.
X. Li, K. Teng, J. Shi, et al., J. Taiwan Instit. Chem. Engin. 60 (2016) 636–642.
doi: 10.1016/j.jtice.2015.11.012
H. Liu, F.Y. Gao, Q.C. Fan, et al., J. Electroanal. Chem. 873 (2020) 114409.
doi: 10.1016/j.jelechem.2020.114409
L. Zhang, Y.L. Hsieh, Nanotechnology 17 (2006) 4416–4423.
doi: 10.1088/0957-4484/17/17/022
C. Liu, Y. Tan, Y. Liu, et al., J. Energy Chem. 25 (2016) 587–593.
doi: 10.1016/j.jechem.2016.03.017
L. Gao, C. Li, W. Huang, et al., Chem. Mater. 32 (2020) 1703–1747.
doi: 10.1021/acs.chemmater.9b04408
Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Adv. Funct. Mater. 29 (2019) 1807882.
doi: 10.1002/adfm.201807882
T.X. Shang, Z.F. Lin, C.S. Qi, et al., Adv. Funct. Mater. 29 (2019) 1903960.
doi: 10.1002/adfm.201903960
D. Xiong, X. Li, Z. Bai, S. Lu, Small 14 (2018) 1703419.
doi: 10.1002/smll.201703419
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, et al., Adv. Electron. Mater. 2 (2016) 1600255.
doi: 10.1002/aelm.201600255
Y.Q. Shi, C. Liu, L. Liu, et al., Chem. Eng. J. 378 (2019) 122267.
doi: 10.1016/j.cej.2019.122267
S. Li, Z. Cui, L. Zhang, B. He, J. Li, J. Membr. Sci. 513 (2016) 1–11.
doi: 10.1016/j.memsci.2016.04.035
Z. Wang, F. Yan, H. Pei, et al., Carbohydr. Polym. 198 (2018) 241–248.
doi: 10.1016/j.carbpol.2018.06.090
Y.T. Liu, P. Zhang, N. Sun, et al., Adv. Mater. 30 (2018) 1707334.
doi: 10.1002/adma.201707334
M. Yu, J. Ma, H. Song, et al., Energy Environ. Sci. 9 (2016) 1495–1503.
doi: 10.1039/C5EE03902A
J. Ren, Y. Zhou, M. Guo, Q. Zheng, D. Lin, Int. J. Hydrog. Energy 43 (2018) 20022–20032.
doi: 10.1016/j.ijhydene.2018.09.045
H. Pan, X. Huang, R. Zhang, et al., Chem. Eng. J. 358 (2019) 1253–1261.
doi: 10.1016/j.cej.2018.10.026
D.C. Xia, J.P. Quan, G.D. Wu, et al., Nanomaterials 9 (2019) 1225.
doi: 10.3390/nano9091225
J. Zhang, C.P. Yang, Y.X. Yin, L.J. Wan, Y.G. Guo, Adv. Mater. 28 (2016) 9539–9544.
doi: 10.1002/adma.201602913
F. Chen, J. Yang, T. Bai, B. Long, X. Zhou, Electrochim. Acta 192 (2016) 99–109.
doi: 10.1016/j.electacta.2016.01.192
W. Bao, X. Tang, X. Guo, et al., Joule 2 (2018) 778–787.
doi: 10.1016/j.joule.2018.02.018
S. Challagulla, K. Tarafder, R. Ganesan, S. Roy, Sci. Rep. 7 (2017) 8783.
doi: 10.1038/s41598-017-08599-2
L. Kernazhitsky, V. Shymanovska, T. Gavrilko, et al., Ukr. J. Phys. 59 (2014) 246–253.
doi: 10.15407/ujpe59.03.0246
Z. Cui, T. Mei, J. Yao, et al., J. Alloys Compd. 753 (2018) 622–629.
doi: 10.1016/j.jallcom.2018.04.234
P. Zhu, J. Zhu, C. Yan, et al., Adv. Mater. Interfaces 5 (2018) 1701598.
doi: 10.1002/admi.201701598
H. Huang, Y. Song, N. Li, et al., Appl. Catal. B 251 (2019) 154–161.
doi: 10.1016/j.apcatb.2019.03.066
Q. Yin, Z. Cao, Z. Wang, et al., Nanotechnology 32 (2021) 015706.
doi: 10.1088/1361-6528/abb72f
H. Peng, F. Liu, X. Liu, et al., ACS Catal. 4 (2014) 3797–3805.
doi: 10.1021/cs500744x
L. Li, M. Zhang, X. Zhang, Z. Zhang, J. Power Sources 364 (2017) 234–241.
doi: 10.1016/j.jpowsour.2017.08.029
J. Guo, F. Dong, S. Zhong, et al., Catal. Lett. 148 (2018) 359–373.
doi: 10.1007/s10562-017-2245-8
H.E. Wang, K. Yin, N. Qin, et al., J. Mater. Chem. A 7 (2019) 10346–10353.
doi: 10.1039/C9TA01598A
Y. Tian, G. Li, Y. Zhang, et al., Adv. Mater. 32 (2020) 1904876.
doi: 10.1002/adma.201904876
P. Huo, P. Zhao, X. Shi, Z. Zhou, B. Liu, J. Mater. Sci. 56 (2021) 2138–2149.
doi: 10.1007/s10853-020-05352-5
B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Sci. Rep. 6 (2016) 32355.
doi: 10.1038/srep32355
L. Yang, Y. Peng, Y. Yang, et al., ACS Appl, Nano Mater 2 (2019) 1737–1738.
L.C. Sim, K.H. Leong, S. Ibrahim, P. Saravanan, J. Mater. Chem. A 2 (2014) 5315–5322.
doi: 10.1039/C3TA14857B
S. Umrao, S. Abraham, F. Theil, et al., RSC Adv. 4 (2014) 59890–59901.
doi: 10.1039/C4RA10572A
I. Hashemizadeh, D.C.W. Tsang, Y.H. Ng, et al., RSC Adv. 7 (2017) 39098–39108.
doi: 10.1039/C7RA04185C
S. Zhang, H. Liu, B. Cao, et al., J. Mater. Chem. A 7 (2019) 21766–21773.
doi: 10.1039/C9TA07357D
F. Miao, C. Shao, X. Li, et al., J. Mater. Chem. A 4 (2016) 5623–5631.
doi: 10.1039/C6TA00830E
F. Pei, L. Lin, D. Ou, et al., Nat. Commun. 8 (2017) 482.
doi: 10.1038/s41467-017-00575-8
Y. Jiang, Y. Deng, B. Zhang, et al., Nanoscale 12 (2020) 12308–12316.
doi: 10.1039/D0NR02607G
H. Zhang, L. Yang, P. Zhang, et al., Adv. Mater. 33 (2021) 2008447.
doi: 10.1002/adma.202008447
R. Li, H. Peng, Q. Wu, et al., Angew. Chem. Int. Ed. 59 (2020) 12129–12138.
doi: 10.1002/anie.202004048
W. Hua, H. Li, C. Pei, et al., Adv. Mater. 33 (2021) 2101006.
doi: 10.1002/adma.202101006
X. Zhang, L.L. Zhu, Z.X. Gao, et al., Mater. Today Commun. 28 (2021) 102666.
doi: 10.1016/j.mtcomm.2021.102666
G. Jiang, N. Zheng, X. Chen, et al., Chem. Eng. J. 373 (2019) 1309–1318.
doi: 10.1016/j.cej.2019.05.119
X. a. Chen, Z. Xiao, X. Ning, et al., Adv. Energy Mater. 4 (2014) 1301988.
doi: 10.1002/aenm.201301988
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Jun Jiang , Tong Guo , Wuxin Bai , Mingliang Liu , Shujun Liu , Zhijie Qi , Jingwen Sun , Shugang Pan , Aleksandr L. Vasiliev , Zhiyuan Ma , Xin Wang , Junwu Zhu , Yongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Na Li , Wenxue Wang , Peng Wang , Zhanying Sun , Xinlong Tian , Xiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428