Investigation of the promotion effect of Mo doped CuO catalysts for the low-temperature performance of NH3-SCR reaction
-
* Corresponding author.
E-mail address: quzhenping@dlut.edu.cn (Z. Qu).
Citation:
Hui Wang, Ting Zhu, Yujie Qiao, Shicheng Dong, Zhenping Qu. Investigation of the promotion effect of Mo doped CuO catalysts for the low-temperature performance of NH3-SCR reaction[J]. Chinese Chemical Letters,
;2022, 33(12): 5223-5227.
doi:
10.1016/j.cclet.2022.01.075
L. Kang, L. Han, J. He, et al., Environ. Sci. Technol. 53 (2019) 938–945.
doi: 10.1021/acs.est.8b05637
J.K. Lai, I.E. Wachs, ACS Catal. 8 (2018) 6537–6551.
doi: 10.1021/acscatal.8b01357
R. Wu, L. Li, N. Zhang, et al., Catal. Today 376 (2021) 302–310.
doi: 10.1016/j.cattod.2020.04.051
L. Zhu, Z. Zhong, H. Yang, C. Wang, J. Environ. Sci. 56 (2017) 169–179.
doi: 10.1016/j.jes.2016.08.025
H. Wang, Z. Qu, S. Dong, et al., Environ. Sci. Technol. 50 (2016) 13511–13519.
doi: 10.1021/acs.est.6b03589
L. Yan, Y. Liu, H. Hu, et al., ChemCatChem 8 (2016) 2267–2278.
doi: 10.1002/cctc.201600332
J. Yu, F. Guo, Y. Wang, et al., Appl. Catal. B: Environ. 95 (2010) 160–168.
doi: 10.1016/j.apcatb.2009.12.023
H. Wang, Z. Qu, H. Xie, et al., J. Catal. 338 (2016) 56–67.
doi: 10.1016/j.jcat.2016.02.009
N. Zhang, L. Li, B. Zhang, et al., J. Environ. Chem. Eng. 7 (2019) 103044.
doi: 10.1016/j.jece.2019.103044
L. Chen, Z. Si, X. Wu, D. Weng, ACS Appl. Mater. Interfaces 6 (2014) 8134–8145.
doi: 10.1021/am5004969
Q. Liu, Z. Liu, J. Su, Catal. Today 158 (2010) 370–376.
doi: 10.1016/j.cattod.2010.04.036
D. Pietrogiacomi, A. Magliano, D. Sannino, et al., Appl. Catal. B: Environ. 60 (2005) 83–92.
doi: 10.1016/j.apcatb.2005.02.025
B. Xu, Y. Liu, Y. Shen, S. Zhu, RSC Adv. 8 (2018) 2586–2592.
doi: 10.1039/C7RA12153A
Z. Si, D. Weng, X. Wu, et al., J. Catal. 271 (2010) 43–51.
doi: 10.1016/j.jcat.2010.01.025
L. Li, W. Tan, X. Wei, et al., Catal. Commun. 114 (2018) 10–14.
doi: 10.1145/3231541.3231545
Z. Liu, J. Zhu, S. Zhang, et al., Catal. Commun. 46 (2014) 90–93.
doi: 10.1016/j.catcom.2013.11.032
Y. Chen, Z. Dong, Z. Huang, et al., Catal. Sci. Technol. 7 (2017) 2467–2473.
doi: 10.1039/C7CY00416H
J. He, Q. Zhai, Q. Zhang, et al., J. Catal. 299 (2013) 53–66.
doi: 10.1016/j.jcat.2012.11.032
P. Lu, P. Wu, J. Wang, X. Ma, Chem. Phys. Lett. 730 (2019) 297–301.
doi: 10.1016/j.cplett.2019.06.029
S. Suárez, J.A. Martín, M. Yates, et al., J. Catal. 229 (2005) 227–236.
doi: 10.1016/j.jcat.2004.10.019
J. Jemal, H. Tounsi, K. Chaari, et al., Appl. Catal. B: Environ. 113-114 (2012) 255–260.
doi: 10.1016/j.apcatb.2011.11.045
X. Zhang, X. Zhang, L. Song, et al., Int. J. Hydrogen Energy 43 (2018) 18279–18288.
doi: 10.1016/j.ijhydene.2018.08.060
W. Lv, L. Li, Q. Meng, X. Zhang, J. Mater. Sci. 55 (2020) 2492–2502.
doi: 10.1007/s10853-019-04129-9
T. Jan, S. Azmat, Q. Mansoor, et al., Mater. Res. Express 6 (2019) 1050a1053.
doi: 10.1088/2053-1591/ab3f8c
R. Swapna, M.C. Santhosh Kumar, J. Phys. Chem. Solids 74 (2013) 418–425.
doi: 10.1016/j.jpcs.2012.11.003
X. Zhang, H. Wang, L. Meng, et al., ACS Appl. Energy Mater. 3 (2020) 3465–3476.
doi: 10.1021/acsaem.9b02537
Y. Wang, Y. Wang, L. Yu, et al., Chem. Eng. J. 368 (2019) 115–128.
doi: 10.1016/j.cej.2019.02.174
J. Han, D. Zhang, P. Maitarad, et al., Catal. Sci. Technol. 5 (2015) 438–446.
doi: 10.1039/C4CY00789A
R.T. Guo, X. Sun, J. Liu, et al., Appl. Catal. A: Gen. 558 (2018) 1–8.
doi: 10.1016/j.apcata.2018.03.028
L. Ma, C.Y. Seo, M. Nahata, et al., Appl. Catal. B: Environ. 232 (2018) 246–259.
doi: 10.1016/j.apcatb.2018.03.065
C. Yu, B. Huang, L. Dong, et al., Chem. Eng. J. 316 (2017) 1059–1068.
doi: 10.1016/j.cej.2017.02.024
Z. Ma, X. Wu, H. Härelind, et al., J. Mol. Catal. A: Chem. 423 (2016) 172–180.
doi: 10.1016/j.molcata.2016.06.023
G. Qi, R.T. Yang, R. Chang, Appl. Catal. B: Environ. 51 (2004) 93–106.
doi: 10.1016/j.apcatb.2004.01.023
S. Zhan, H. Zhang, Y. Zhang, et al., Appl. Catal. B: Environ. 203 (2017) 199–209.
doi: 10.1016/j.apcatb.2016.10.010
H. Jiang, Q. Wang, H. Wang, et al., ACS Appl. Mater. Interfaces 8 (2016) 26817–26826.
doi: 10.1021/acsami.6b08851
L. Ma, Y. Cheng, G. Cavataio, et al., Appl. Catal. B: Environ. 156-157 (2014) 428–437.
doi: 10.1016/j.apcatb.2014.03.048
Z. Liu, S. Zhang, J. Li, et al., Appl. Catal. B: Environ. 158-159 (2014) 11–19.
doi: 10.3917/maorg.021.0011
L. Liu, Y. Chen, L. Dong, et al., Appl. Catal. B: Environ. 90 (2009) 105–114.
doi: 10.1016/j.apcatb.2009.02.021
R.Q. Long, R.T. Yang, J. Catal. 190 (2000) 22-31.
doi: 10.1006/jcat.1999.2737
ZHENG Wei , CHEN Jia-ling , GUO Li , ZHANG Wen-bo , ZHAO Hao-ran , WU Xiao-qin . Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1193-1207.
Zhen Chen , Ce Bian , Chi Fan , Tao Li . The role of Si coordination structures in the catalytic properties and durability of Cu-SAPO-34 as NH3-SCR catalyst for NOx reduction. Chinese Chemical Letters, 2022, 33(2): 893-897. doi: 10.1016/j.cclet.2021.06.071
Pu Yijuan , Xie Xinyu , Jiang Wenju , Yang Lin , Jiang Xia , Yao Lu . Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: A review. Chinese Chemical Letters, 2020, 31(10): 2549-2555. doi: 10.1016/j.cclet.2020.04.012
LIANG Yan-zheng , WANG Xue-tao , LUO Shao-feng , ZHOU Yu-feng . Performance of the modified Cu-Mn/SAPO-34 catalysts in the selective catalytic reduction of NOx by NH3. Journal of Fuel Chemistry and Technology, 2020, 48(6): 728-734.
ZHANG Qian-wei , WANG Xue-tao . Preparation and properties of Ce-Mn/ZSM-5 catalysts modified with different metals. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1265-1272.
Xiao Chun Shen , Hui Lou , Kai Hu , Xiao Ming Zheng . Non-oxidative aromatization of C1 to C3 hydrocarbons over Pd-promoted Ga/HZSM-5 catalyst under mild conditions. Chinese Chemical Letters, 2007, 18(4): 479-482. doi: 10.1016/j.cclet.2007.01.044
Zhu Na , Lian Zhihua , Zhang Yan , Shan Wenpo , He Hong . Improvement of low-temperature catalytic activity over hierarchical Fe-Beta catalysts for selective catalytic reduction of NOx with NH3. Chinese Chemical Letters, 2019, 30(4): 867-870. doi: 10.1016/j.cclet.2019.03.011
Lijing Sun , Miao Yang , Yi Cao , Peng Tian , Pengfei Wu , Lei Cao , Shutao Xu , Shu Zeng , Zhongmin Liu . A reconstruction strategy for the synthesis of Cu-SAPO-34 with excellent NH3-SCR catalytic performance and hydrothermal stability. Chinese Journal of Catalysis, 2020, 41(9): 1410-1420. doi: 10.1016/S1872-2067(20)63583-5
ZHANG Xiang-jun , LIU Xiao-gang , LI Qing-yong , LI Yan , WEI Bo , WANG Hong , LI Cui-qing , SONG Yong-ji . Effect of carrier on the performance of copper based catalyst for selective catalytic reduction of NO with NH3 at low temperature. Journal of Fuel Chemistry and Technology, 2017, 45(2): 220-226.
SU Hang , XU Man , ZHOU Shi-Jian , YANG Fu , KONG Yan . CeO2 in Different Morphologies with 2, 4-Dihydroxybenzonic Acid as Auxiliary: Synthesis and Application in NH3-SCR. Chinese Journal of Inorganic Chemistry, 2018, 34(8): 1538-1546. doi: 10.11862/CJIC.2018.168
JI Sheng-xiao , ZHANG Wei-jian , ZHENG Yu-ying , ZHU Jian-feng . Low-temperature combustion synthesis of the Mn-CeOx catalyst and its performance in the selective catalytic reduction of NOx by NH3. Journal of Fuel Chemistry and Technology, 2019, 47(2): 224-232.
LIANG Yan-zheng , WANG Xue-tao , ZHANG Qian-wei , LUO Shao-feng , ZHOU Yu-feng . Study on the preparation and catalytic performance of bimetallic Ce-Mn/ZSM-5 catalyst for selective catalytic reduction of nitric oxide by NH3. Journal of Fuel Chemistry and Technology, 2020, 48(2): 205-212.
LIU Xin , NING Ping , LI Hao , SONG Zhong-xian , WANG Yan-cai , ZHANG Jin-hui , TANG Xiao-su , WANG Ming-zhi , ZHANG Qiu-lin . Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst. Journal of Fuel Chemistry and Technology, 2016, 44(02): 225-231.
LIU Xin , NING Ping , LI Hao , SONG Zhong-xian , WANG Yan-cai , ZHANG Jin-hui , TANG Xiao-su , WANG Ming-zhi , ZHANG Qiu-lin . Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst. Journal of Fuel Chemistry and Technology, 2016, 44(2): 225-231.
WANG Yan-cai , LIU Xin , NING Ping , ZHANG Qiu-lin , ZHANG Jin-hui , XU Li-si , TANG Xiao-su , WANG Ming-zhi . Effect of preparation methods on selective catalytic reduction of NOx with NH3 over manganese oxide octahedral molecular sieves. Journal of Fuel Chemistry and Technology, 2014, 42(11): 1357-1364.
FAN Feng-Qi , MENG Ming , TIAN Ye , ZHENG Li-Rong , ZHANG Jing , HU Tian-Dou . Effect of Cu Loading on the Structure and Catalytic Performance of the LNT Catalyst CuO-K2CO3/TiO2. Acta Physico-Chimica Sinica, 2015, 31(9): 1761-1770. doi: 10.3866/PKU.WHXB201507291
ZHANG Qiang , LIU Lu , YU Meng-yun , Zhou ZHOU . Effect of sulfuric acid modification of Al2O3 support on the SCR performance of MnCe/Al2O3 catalysts. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1137-1145.
ZHOU Wen-bo , NIU Sheng-li , WANG Dong , LU Chun-mei , HAN Kui-hua , LI Ying-jie , ZHU Ying . Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1224-1235.
Zou Hongyan , Wang Zhong-Liang , Cao Yang , Huang Genping . Mechanism of rhodium(Ⅲ)-catalyzed formal C(sp3)-H activation/spiroannulation of α-arylidene pyrazolones with alkynes:A computational study. Chinese Chemical Letters, 2018, 29(9): 1355-1358. doi: 10.1016/j.cclet.2017.10.034
Lu Fan , Yang Jie , Zhou Ling , Wang Xinyue , Yang Yin , Li Jumei . Enhanced electrochemical performance and mechanism study of AgLi1/3Sn2/3O2 for lithium storage. Chinese Chemical Letters, 2019, 30(12): 2017-2020. doi: 10.1016/j.cclet.2019.04.019