Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction
-
* Corresponding author.
E-mail address: huangyu@ieecas.cn (Y. Huang).
Citation:
Xianjin Shi, Leo N.Y. Cao, Meijuan Chen, Yu Huang. Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction[J]. Chinese Chemical Letters,
;2022, 33(12): 5023-5029.
doi:
10.1016/j.cclet.2022.01.066
Z. Jiang, X. Xu, Y. Ma, et al., Nature 586 (2020) 549–554.
doi: 10.1038/s41586-020-2738-2
J.L. White, M.F. Baruch, J.E. Pander, et al., Chem. Rev. 115 (2015) 12888–12935.
doi: 10.1021/acs.chemrev.5b00370
C. Hepburn, E. Adlen, J. Beddington, et al., Nature 575 (2019) 87–97.
doi: 10.1038/s41586-019-1681-6
A. Rafiee, K.R. Khalilpour, D. Milani, M. Panahi, J. Environ. Chem. Eng. 6 (2018) 5771–5794.
doi: 10.1016/j.jece.2018.08.065
W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 26 (2014) 4607–4626.
doi: 10.1002/adma.201400087
U. Ulmer, T. Dingle, P.N. Duchesne, et al., Nat. Commun. 10 (2019) 1–12.
doi: 10.1038/s41467-018-07882-8
O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, Nano Lett. 9 (2009) 731–737.
doi: 10.1021/nl803258p
S. Gong, G. Zhu, R. Wang, et al., Appl. Catal. B: Environ. 297 (2021) 120413.
doi: 10.1016/j.apcatb.2021.120413
Y. Wang, Z. Zhang, L. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14595–14598.
doi: 10.1021/jacs.8b09344
A. Li, Q. Cao, G. Zhou, et al., Angew. Chem. Int. Ed. 58 (2019) 14549–14555.
doi: 10.1002/anie.201908058
D. Qin, Y. Zhou, W. Wang, et al., J. Mater. Chem. A 8 (2020) 19156–19195.
doi: 10.1039/d0ta07460h
P. Qiu, J. Wang, Z. Liang, et al., Chin. Chem. Lett. 32 (2021) 3501–3504.
doi: 10.1016/j.cclet.2021.03.077
Z. Liang, Y. Xue, X. Wang, et al., Chem. Eng. J. 421 (2021) 130016.
doi: 10.1016/j.cej.2021.130016
Z. Liang, X. Meng, Y. Xue, et al., J. Colloid Interface Sci. 598 (2021) 172–180.
doi: 10.1016/j.jcis.2021.04.066
X. Jiao, K. Zheng, L. Liang, et al., Chem. Soc. Rev. 49 (2020) 6592–6604.
doi: 10.1039/d0cs00332h
T. Kong, Y. Jiang, Y. Xiong, Chem. Soc. Rev. 49 (2020) 6579–6591.
doi: 10.1039/c9cs00920e
T. Zhang, W. Lin, Chem. Soc. Rev. 43 (2014) 5982–5993.
doi: 10.1039/C4CS00103F
Y. Zhang, B. Xia, J. Ran, et al., Adv. Energy Mater. 10 (2020) 1903879.
doi: 10.1002/aenm.201903879
C. Gao, J. Low, R. Long, et al., Chem. Rev. 120 (2020) 12175–12216.
doi: 10.1021/acs.chemrev.9b00840
S. Ji, Y. Chen, X. Wang, et al., Chem. Rev. 120 (2020) 11900–11955.
doi: 10.1021/acs.chemrev.9b00818
Z. Li, S. Ji, Y. Liu, et al., Chem. Rev. 120 (2020) 623–682.
doi: 10.1021/acs.chemrev.9b00311
C. Gao, S. Chen, Y. Wang, et al., Adv. Mater. 30 (2018) e1704624.
doi: 10.1002/adma.201704624
Y.B. Lu, Z.H. Zhang, H.M. Wang, Y. Wang, Appl. Catal. B: Environ. 292 (2021) 120162.
doi: 10.1016/j.apcatb.2021.120162
S. An, G. Zhang, T. Wang, et al., ACS Nano 12 (2018) 9441–9450.
doi: 10.1021/acsnano.8b04693
A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2 (2018) 65–81.
doi: 10.1038/s41570-018-0010-1
X. Zhou, Acta Physico-Chimica Sinica 37 (2021) 2008064.
B. Qiao, A. Wang, X. Yang, et al., Nat. Chem. 3 (2011) 634–641.
doi: 10.1038/nchem.1095
N. Aguilar, M. Atilhan, S. Aparicio, Appl. Surf. Sci. 534 (2020) 147611.
doi: 10.1016/j.apsusc.2020.147611
M.B. Gawande, P. Fornasiero, R. Zboril, ACS Catal., 10 (2020) 2231–2259.
doi: 10.1021/acscatal.9b04217
C. Zupen, E. Vorobyeva, S. Mitchell, et al., Natl. Sci. Rev. 5 (2018) 642–652.
doi: 10.1093/nsr/nwy048
P. Wang, D.Y. Zhao, L.W. Yin, Energy Environ. Sci. 14 (2021) 1794–1834.
doi: 10.1039/d0ee02651d
X. Jiao, X. Li, X. Jin, et al., J. Am. Chem. Soc. 139 (2017) 18044–18051.
doi: 10.1021/jacs.7b10287
Y. Wang, J. Mao, X.G. Meng, et al., Chem. Rev. 119 (2019) 1806–1854.
doi: 10.1021/acs.chemrev.8b00501
W. Shao, X.D. Zhang, Nanoscale 13 (2021) 7081–7095.
doi: 10.1039/d1nr00649e
P. Chen, B. Lei, X. Dong, et al., ACS Nano 14 (2020) 15841–15852.
doi: 10.1021/acsnano.0c07083
Q.S. Wang, D.F. Zhang, Y. Chen, et al., ACS Sustain. Chem. Eng. 7 (2019) 6430–6443.
doi: 10.1021/acssuschemeng.8b06273
W. Zheng, Y. Wang, L. Shuai, et al., Adv. Funct. Mater. 31 (2021) 2008146.
doi: 10.1002/adfm.202008146
Y. Zhang, X. Wang, S. Zheng, et al., Adv. Funct. Mater. 31 (2021) 2104377.
doi: 10.1002/adfm.202104377
X. Wang, S. Feng, W. Lu, et al., Adv. Funct. Mater. 31 (2021) 2104243.
doi: 10.1002/adfm.202104243
J. Chen, Z. Li, X. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202111683.
S.F. Ji, Y. Qu, T. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 10651–10657.
doi: 10.1002/anie.202003623
X.X. Zhao, K.P. Loh, S.J. Pennycook, J. Phys. Condens. Matter 33 (2021) 063001.
doi: 10.1088/1361-648x/abbdb9
Y.A. Zhou, J. Li, X.P. Gao, et al., J. Mater. Chem. A 9 (2021) 9979–9999.
doi: 10.1039/d1ta00154j
X. Li, X. Yang, J. Zhang, et al., ACS Catal. 9 (2019) 2521–2531.
doi: 10.1021/acscatal.8b04937
J. Jones, H. Xiong, A.T. DeLaRiva, et al., Science 353 (2016) 150–154.
doi: 10.1126/science.aaf8800
P. Zhou, F. Lv, N. Li, et al., Nano Energy 56 (2019) 127–137.
doi: 10.1016/j.nanoen.2018.11.033
Z. Wang, Y. Huang, L. Chen, et al., J. Mater. Chem. A 6 (2018) 972–981.
doi: 10.1039/C7TA09132J
S. Yin, J. Han, T. Zhou, R. Xu, Catal. Sci. Technol. 5 (2015) 5048–5061.
doi: 10.1039/C5CY00938C
K.S. Lakhi, D.H. Park, K. Al-Bahily, et al., Chem. Soc. Rev. 46 (2017) 72–101.
doi: 10.1039/C6CS00532B
S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150–2176.
doi: 10.1002/adma.201500033
X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8 (2009) 76–80.
doi: 10.1038/nmat2317
Y.C. Zhang, N. Afzal, L. Pan, et al., Adv. Sci. 6 (2019) 1900053.
doi: 10.1002/advs.201900053
Z. Wang, M. Chen, Y. Huang, et al., Appl. Catal. B: Environ. 239 (2018) 352–361.
doi: 10.1016/j.apcatb.2018.08.030
E. Luo, Y. Chu, J. Liu, et al., Energy Environ. Sci. 14 (2021) 2158–2185.
doi: 10.1039/d1ee00142f
X.B. Zhu, B. Hu, C.X. Wang, et al., J. Catal. 391 (2020) 1–10.
doi: 10.1016/j.jcat.2020.08.016
W. Liu, L.L. Cao, W.R. Cheng, et al., Angew. Chem. Int. Ed. 56 (2017) 9312-1317.
doi: 10.1002/anie.201704358
Y.R. Li, Z.W. Wang, T. Xia, et al., Adv. Mater. 28 (2016) 6959–6965.
doi: 10.1002/adma.201601960
X. Wang, X. Chen, A. Thomas, et al., Adv. Mater. 21 (2009) 1609–1612.
doi: 10.1002/adma.200802627
X.H. Jiang, L.S. Zhang, H.Y. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 23112–23116.
doi: 10.1002/anie.202011495
X.G. Li, W.T. Bi, L. Zhang, et al., Adv. Mater. 28 (2016) 2427–2431.
doi: 10.1002/adma.201505281
H. Su, W. Che, F.M. Tang, et al., J. Phys. Chem. C 122 (2018) 21108–21114.
doi: 10.1021/acs.jpcc.8b03383
Z. Zeng, Y. Su, X. Quan, et al., Nano Energy 69 (2020) 104409.
doi: 10.1016/j.nanoen.2019.104409
S. Cao, H. Li, T. Tong, et al., Adv. Funct. Mater. 28 (2018) 1802169.
doi: 10.1002/adfm.201802169
X.D. Xiao, Y.T. Gao, L.P. Zhang, et al., Adv. Mater. 32 (2020) 2003082.
doi: 10.1002/adma.202003082
Y. Zhao, Z. Han, G. Gao, et al., Adv. Funct. Mater., (2021) 2104976.
doi: 10.1002/adfm.202104976
Q. Chen, G. Gao, Y. Zhang, et al., J. Mater. Chem. A 9 (2021) 15820–15826.
doi: 10.1039/d1ta02926f
Y. Cao, L. Guo, M. Dan, et al., Nat. Commun. 12 (2021) 1675.
doi: 10.1038/s41467-021-21925-7
J.M. Zhang, X.P. Xu, L. Yang, et al., Small Methods 3 (2019) 1900653.
doi: 10.1002/smtd.201900653
X. Li, J.G. Yu, M. Jaroniec, X.B. Chen, Chem. Rev. 119 (2019) 3962–4179.
doi: 10.1021/acs.chemrev.8b00400
Y.L. Yang, F. Li, J. Chen, et al., ChemSusChem 13 (2020) 1979–1985.
doi: 10.1002/cssc.202000375
P. Sharma, S. Kumar, O. Tomanec, et al., Small 17 (2021) 2006478.
doi: 10.1002/smll.202006478
S.F. Tang, X.P. Yin, G.Y. Wang, et al., Nano Res. 12 (2019) 457–462.
doi: 10.1007/s12274-018-2240-4
Z. Zhao, W. Liu, Y. Shi, et al., PCCP 23 (2021) 4690–4699.
doi: 10.1039/d0cp05570k
J. Fu, L. Zhu, K. Jiang, et al., Chem. Eng. J. 415 (2021) 128982.
doi: 10.1016/j.cej.2021.128982
J. Di, C. Chen, S. Yang, et al., Nat. Commun. 10 (2019) 2840.
doi: 10.1038/s41467-019-10392-w
X. Ren, L. Shi, Y. Li, et al., ChemCatChem 12 (2020) 3870–3879.
doi: 10.1002/cctc.202000546
H. Zhang, J. Wei, J. Dong, et al., Angew. Chem. Int. Ed. 55 (2016) 14308–14312.
L. Cheng, H. Yin, C. Cai, et al., Small 16 (2020) 2002111.
doi: 10.1002/smll.202002111
J. Wang, T. Heil, B. Zhu, et al., ACS Nano 14 (2020) 8584–8593.
doi: 10.1021/acsnano.0c02940
M. Kou, W. Liu, Y. Wang, et al., Appl. Catal. B: Environ. 291 (2021) 120146.
doi: 10.1016/j.apcatb.2021.120146
S.F. Ji, Y. Qu, T. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 10651–10657.
doi: 10.1002/anie.202003623
S. Sun, G. Zhang, N. Gauquelin, et al., Sci. Rep. 3 (2013) 1775.
doi: 10.1038/srep01775
Y. Ren, Y. Tang, L. Zhang, et al., Nat. Commun. 10 (2019) 4500.
doi: 10.1038/s41467-019-12459-0
K. Fujiwara, S.E. Pratsinis, Appl. Catal. B: Environ. 226 (2018) 127–134.
doi: 10.1016/j.apcatb.2017.12.042
N. Daelman, M. Capdevila-Cortada, N. Lopez, Nat. Mater. 18 (2019) 1215–1221.
doi: 10.1038/s41563-019-0444-y
G.P. Gao, Y. Jiao, E.R. Waclawik, A.J. Du, J. Am. Chem. Soc. 138 (2016) 6292–6297.
doi: 10.1021/jacs.6b02692
P. Zhou, Y.G. Chao, F. Lv, et al., Sci. Bull. 65 (2020) 720–725.
doi: 10.1016/j.scib.2019.12.025
Y.J. Cao, D.H. Wang, Y. Lin, et al., ACS Appl. Energy Mater. 1 (2018) 6082–6088.
doi: 10.1021/acsaem.8b01143
Y. Xue, Y.G. Lei, X.Y. Liu, et al., New J. Chem. 42 (2018) 14083–14086.
doi: 10.1039/C8NJ02933D
X. Huang, H. Yan, L. Huang, et al., J. Phys. Chem. C 123 (2019) 7922–7930.
doi: 10.1021/acs.jpcc.8b07181
N. Wang, J. Wang, J. Hu, et al., ACS Appl. Energy Mater. 1 (2018) 2866–2873.
doi: 10.1021/acsaem.8b00526
Z. Chen, Y. Bu, L. Wang, et al., Appl. Catal. B: Environ. 274 (2020) 119117.
doi: 10.1016/j.apcatb.2020.119117
M. Ou, S.P. Wan, Q. Zhong, et al., Int. J. Hydrogen Energy 42 (2017) 27043–27054.
doi: 10.1016/j.ijhydene.2017.09.047
S. Fang, X.R. Zhu, X.K. Liu, et al., Nat. Commun. 11 (2020) 1029.
doi: 10.1038/s41467-020-14848-2
G. Liu, Y. Huang, H. Lv, et al., Appl. Catal. B: Environ. 284 (2021) 119683.
doi: 10.1016/j.apcatb.2020.119683
X.H. Huang, Y.J. Xia, Y.J. Cao, et al., Nano Res. 10 (2017) 1302–1312.
doi: 10.1007/s12274-016-1416-z
Z. Chen, Y. Chen, S. Chao, et al., ACS Catal. 10 (2020) 1865–1870.
doi: 10.1021/acscatal.9b05212
C. Dong, C. Lian, S. Hu, et al., Nat. Commun. 9 (2018) 1252.
doi: 10.1038/s41467-018-03666-2
R. Li, W. Zhang, K. Zhou, Adv. Mater. 30 (2018) 1705512.
doi: 10.1002/adma.201705512
S. Wang, J. Lin, X. Wang, Phys. Chem. Chem. Phys. 16 (2014) 14656–14660.
doi: 10.1039/c4cp02173h
Y. Gong, B. Shao, J. Mei, et al., Nano Res. 15 (2021) 551–556.
Y. Li, B. Li, D. Zhang, et al., ACS Nano 14 (2020) 10552–10561.
doi: 10.1021/acsnano.0c04544
J. Yang, Z. Wang, J. Jiang, et al., Nano Energy 76 (2020) 105059.
doi: 10.1016/j.nanoen.2020.105059
X. Cui, X. Dai, A. -. E. Surkus, et al., Chinese J. Catal. 40 (2019) 1679–1685.
doi: 10.1016/S1872-2067(19)63316-4
Z.M. Migaszewski, A. Galuszka, Crit. Rev. Env. Sci. Technol. 45 (2015) 429–471.
doi: 10.1080/10643389.2013.866622
Z. Han, Y. Zhao, G. Gao, et al., Small 17 (2021) 2102089.
doi: 10.1002/smll.202102089
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035