Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction
-
* Corresponding author.
E-mail address: huangyu@ieecas.cn (Y. Huang).
Citation:
Xianjin Shi, Leo N.Y. Cao, Meijuan Chen, Yu Huang. Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction[J]. Chinese Chemical Letters,
;2022, 33(12): 5023-5029.
doi:
10.1016/j.cclet.2022.01.066
Z. Jiang, X. Xu, Y. Ma, et al., Nature 586 (2020) 549–554.
doi: 10.1038/s41586-020-2738-2
J.L. White, M.F. Baruch, J.E. Pander, et al., Chem. Rev. 115 (2015) 12888–12935.
doi: 10.1021/acs.chemrev.5b00370
C. Hepburn, E. Adlen, J. Beddington, et al., Nature 575 (2019) 87–97.
doi: 10.1038/s41586-019-1681-6
A. Rafiee, K.R. Khalilpour, D. Milani, M. Panahi, J. Environ. Chem. Eng. 6 (2018) 5771–5794.
doi: 10.1016/j.jece.2018.08.065
W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 26 (2014) 4607–4626.
doi: 10.1002/adma.201400087
U. Ulmer, T. Dingle, P.N. Duchesne, et al., Nat. Commun. 10 (2019) 1–12.
doi: 10.1038/s41467-018-07882-8
O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, Nano Lett. 9 (2009) 731–737.
doi: 10.1021/nl803258p
S. Gong, G. Zhu, R. Wang, et al., Appl. Catal. B: Environ. 297 (2021) 120413.
doi: 10.1016/j.apcatb.2021.120413
Y. Wang, Z. Zhang, L. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14595–14598.
doi: 10.1021/jacs.8b09344
A. Li, Q. Cao, G. Zhou, et al., Angew. Chem. Int. Ed. 58 (2019) 14549–14555.
doi: 10.1002/anie.201908058
D. Qin, Y. Zhou, W. Wang, et al., J. Mater. Chem. A 8 (2020) 19156–19195.
doi: 10.1039/d0ta07460h
P. Qiu, J. Wang, Z. Liang, et al., Chin. Chem. Lett. 32 (2021) 3501–3504.
doi: 10.1016/j.cclet.2021.03.077
Z. Liang, Y. Xue, X. Wang, et al., Chem. Eng. J. 421 (2021) 130016.
doi: 10.1016/j.cej.2021.130016
Z. Liang, X. Meng, Y. Xue, et al., J. Colloid Interface Sci. 598 (2021) 172–180.
doi: 10.1016/j.jcis.2021.04.066
X. Jiao, K. Zheng, L. Liang, et al., Chem. Soc. Rev. 49 (2020) 6592–6604.
doi: 10.1039/d0cs00332h
T. Kong, Y. Jiang, Y. Xiong, Chem. Soc. Rev. 49 (2020) 6579–6591.
doi: 10.1039/c9cs00920e
T. Zhang, W. Lin, Chem. Soc. Rev. 43 (2014) 5982–5993.
doi: 10.1039/C4CS00103F
Y. Zhang, B. Xia, J. Ran, et al., Adv. Energy Mater. 10 (2020) 1903879.
doi: 10.1002/aenm.201903879
C. Gao, J. Low, R. Long, et al., Chem. Rev. 120 (2020) 12175–12216.
doi: 10.1021/acs.chemrev.9b00840
S. Ji, Y. Chen, X. Wang, et al., Chem. Rev. 120 (2020) 11900–11955.
doi: 10.1021/acs.chemrev.9b00818
Z. Li, S. Ji, Y. Liu, et al., Chem. Rev. 120 (2020) 623–682.
doi: 10.1021/acs.chemrev.9b00311
C. Gao, S. Chen, Y. Wang, et al., Adv. Mater. 30 (2018) e1704624.
doi: 10.1002/adma.201704624
Y.B. Lu, Z.H. Zhang, H.M. Wang, Y. Wang, Appl. Catal. B: Environ. 292 (2021) 120162.
doi: 10.1016/j.apcatb.2021.120162
S. An, G. Zhang, T. Wang, et al., ACS Nano 12 (2018) 9441–9450.
doi: 10.1021/acsnano.8b04693
A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2 (2018) 65–81.
doi: 10.1038/s41570-018-0010-1
X. Zhou, Acta Physico-Chimica Sinica 37 (2021) 2008064.
B. Qiao, A. Wang, X. Yang, et al., Nat. Chem. 3 (2011) 634–641.
doi: 10.1038/nchem.1095
N. Aguilar, M. Atilhan, S. Aparicio, Appl. Surf. Sci. 534 (2020) 147611.
doi: 10.1016/j.apsusc.2020.147611
M.B. Gawande, P. Fornasiero, R. Zboril, ACS Catal., 10 (2020) 2231–2259.
doi: 10.1021/acscatal.9b04217
C. Zupen, E. Vorobyeva, S. Mitchell, et al., Natl. Sci. Rev. 5 (2018) 642–652.
doi: 10.1093/nsr/nwy048
P. Wang, D.Y. Zhao, L.W. Yin, Energy Environ. Sci. 14 (2021) 1794–1834.
doi: 10.1039/d0ee02651d
X. Jiao, X. Li, X. Jin, et al., J. Am. Chem. Soc. 139 (2017) 18044–18051.
doi: 10.1021/jacs.7b10287
Y. Wang, J. Mao, X.G. Meng, et al., Chem. Rev. 119 (2019) 1806–1854.
doi: 10.1021/acs.chemrev.8b00501
W. Shao, X.D. Zhang, Nanoscale 13 (2021) 7081–7095.
doi: 10.1039/d1nr00649e
P. Chen, B. Lei, X. Dong, et al., ACS Nano 14 (2020) 15841–15852.
doi: 10.1021/acsnano.0c07083
Q.S. Wang, D.F. Zhang, Y. Chen, et al., ACS Sustain. Chem. Eng. 7 (2019) 6430–6443.
doi: 10.1021/acssuschemeng.8b06273
W. Zheng, Y. Wang, L. Shuai, et al., Adv. Funct. Mater. 31 (2021) 2008146.
doi: 10.1002/adfm.202008146
Y. Zhang, X. Wang, S. Zheng, et al., Adv. Funct. Mater. 31 (2021) 2104377.
doi: 10.1002/adfm.202104377
X. Wang, S. Feng, W. Lu, et al., Adv. Funct. Mater. 31 (2021) 2104243.
doi: 10.1002/adfm.202104243
J. Chen, Z. Li, X. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202111683.
S.F. Ji, Y. Qu, T. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 10651–10657.
doi: 10.1002/anie.202003623
X.X. Zhao, K.P. Loh, S.J. Pennycook, J. Phys. Condens. Matter 33 (2021) 063001.
doi: 10.1088/1361-648x/abbdb9
Y.A. Zhou, J. Li, X.P. Gao, et al., J. Mater. Chem. A 9 (2021) 9979–9999.
doi: 10.1039/d1ta00154j
X. Li, X. Yang, J. Zhang, et al., ACS Catal. 9 (2019) 2521–2531.
doi: 10.1021/acscatal.8b04937
J. Jones, H. Xiong, A.T. DeLaRiva, et al., Science 353 (2016) 150–154.
doi: 10.1126/science.aaf8800
P. Zhou, F. Lv, N. Li, et al., Nano Energy 56 (2019) 127–137.
doi: 10.1016/j.nanoen.2018.11.033
Z. Wang, Y. Huang, L. Chen, et al., J. Mater. Chem. A 6 (2018) 972–981.
doi: 10.1039/C7TA09132J
S. Yin, J. Han, T. Zhou, R. Xu, Catal. Sci. Technol. 5 (2015) 5048–5061.
doi: 10.1039/C5CY00938C
K.S. Lakhi, D.H. Park, K. Al-Bahily, et al., Chem. Soc. Rev. 46 (2017) 72–101.
doi: 10.1039/C6CS00532B
S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150–2176.
doi: 10.1002/adma.201500033
X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8 (2009) 76–80.
doi: 10.1038/nmat2317
Y.C. Zhang, N. Afzal, L. Pan, et al., Adv. Sci. 6 (2019) 1900053.
doi: 10.1002/advs.201900053
Z. Wang, M. Chen, Y. Huang, et al., Appl. Catal. B: Environ. 239 (2018) 352–361.
doi: 10.1016/j.apcatb.2018.08.030
E. Luo, Y. Chu, J. Liu, et al., Energy Environ. Sci. 14 (2021) 2158–2185.
doi: 10.1039/d1ee00142f
X.B. Zhu, B. Hu, C.X. Wang, et al., J. Catal. 391 (2020) 1–10.
doi: 10.1016/j.jcat.2020.08.016
W. Liu, L.L. Cao, W.R. Cheng, et al., Angew. Chem. Int. Ed. 56 (2017) 9312-1317.
doi: 10.1002/anie.201704358
Y.R. Li, Z.W. Wang, T. Xia, et al., Adv. Mater. 28 (2016) 6959–6965.
doi: 10.1002/adma.201601960
X. Wang, X. Chen, A. Thomas, et al., Adv. Mater. 21 (2009) 1609–1612.
doi: 10.1002/adma.200802627
X.H. Jiang, L.S. Zhang, H.Y. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 23112–23116.
doi: 10.1002/anie.202011495
X.G. Li, W.T. Bi, L. Zhang, et al., Adv. Mater. 28 (2016) 2427–2431.
doi: 10.1002/adma.201505281
H. Su, W. Che, F.M. Tang, et al., J. Phys. Chem. C 122 (2018) 21108–21114.
doi: 10.1021/acs.jpcc.8b03383
Z. Zeng, Y. Su, X. Quan, et al., Nano Energy 69 (2020) 104409.
doi: 10.1016/j.nanoen.2019.104409
S. Cao, H. Li, T. Tong, et al., Adv. Funct. Mater. 28 (2018) 1802169.
doi: 10.1002/adfm.201802169
X.D. Xiao, Y.T. Gao, L.P. Zhang, et al., Adv. Mater. 32 (2020) 2003082.
doi: 10.1002/adma.202003082
Y. Zhao, Z. Han, G. Gao, et al., Adv. Funct. Mater., (2021) 2104976.
doi: 10.1002/adfm.202104976
Q. Chen, G. Gao, Y. Zhang, et al., J. Mater. Chem. A 9 (2021) 15820–15826.
doi: 10.1039/d1ta02926f
Y. Cao, L. Guo, M. Dan, et al., Nat. Commun. 12 (2021) 1675.
doi: 10.1038/s41467-021-21925-7
J.M. Zhang, X.P. Xu, L. Yang, et al., Small Methods 3 (2019) 1900653.
doi: 10.1002/smtd.201900653
X. Li, J.G. Yu, M. Jaroniec, X.B. Chen, Chem. Rev. 119 (2019) 3962–4179.
doi: 10.1021/acs.chemrev.8b00400
Y.L. Yang, F. Li, J. Chen, et al., ChemSusChem 13 (2020) 1979–1985.
doi: 10.1002/cssc.202000375
P. Sharma, S. Kumar, O. Tomanec, et al., Small 17 (2021) 2006478.
doi: 10.1002/smll.202006478
S.F. Tang, X.P. Yin, G.Y. Wang, et al., Nano Res. 12 (2019) 457–462.
doi: 10.1007/s12274-018-2240-4
Z. Zhao, W. Liu, Y. Shi, et al., PCCP 23 (2021) 4690–4699.
doi: 10.1039/d0cp05570k
J. Fu, L. Zhu, K. Jiang, et al., Chem. Eng. J. 415 (2021) 128982.
doi: 10.1016/j.cej.2021.128982
J. Di, C. Chen, S. Yang, et al., Nat. Commun. 10 (2019) 2840.
doi: 10.1038/s41467-019-10392-w
X. Ren, L. Shi, Y. Li, et al., ChemCatChem 12 (2020) 3870–3879.
doi: 10.1002/cctc.202000546
H. Zhang, J. Wei, J. Dong, et al., Angew. Chem. Int. Ed. 55 (2016) 14308–14312.
L. Cheng, H. Yin, C. Cai, et al., Small 16 (2020) 2002111.
doi: 10.1002/smll.202002111
J. Wang, T. Heil, B. Zhu, et al., ACS Nano 14 (2020) 8584–8593.
doi: 10.1021/acsnano.0c02940
M. Kou, W. Liu, Y. Wang, et al., Appl. Catal. B: Environ. 291 (2021) 120146.
doi: 10.1016/j.apcatb.2021.120146
S.F. Ji, Y. Qu, T. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 10651–10657.
doi: 10.1002/anie.202003623
S. Sun, G. Zhang, N. Gauquelin, et al., Sci. Rep. 3 (2013) 1775.
doi: 10.1038/srep01775
Y. Ren, Y. Tang, L. Zhang, et al., Nat. Commun. 10 (2019) 4500.
doi: 10.1038/s41467-019-12459-0
K. Fujiwara, S.E. Pratsinis, Appl. Catal. B: Environ. 226 (2018) 127–134.
doi: 10.1016/j.apcatb.2017.12.042
N. Daelman, M. Capdevila-Cortada, N. Lopez, Nat. Mater. 18 (2019) 1215–1221.
doi: 10.1038/s41563-019-0444-y
G.P. Gao, Y. Jiao, E.R. Waclawik, A.J. Du, J. Am. Chem. Soc. 138 (2016) 6292–6297.
doi: 10.1021/jacs.6b02692
P. Zhou, Y.G. Chao, F. Lv, et al., Sci. Bull. 65 (2020) 720–725.
doi: 10.1016/j.scib.2019.12.025
Y.J. Cao, D.H. Wang, Y. Lin, et al., ACS Appl. Energy Mater. 1 (2018) 6082–6088.
doi: 10.1021/acsaem.8b01143
Y. Xue, Y.G. Lei, X.Y. Liu, et al., New J. Chem. 42 (2018) 14083–14086.
doi: 10.1039/C8NJ02933D
X. Huang, H. Yan, L. Huang, et al., J. Phys. Chem. C 123 (2019) 7922–7930.
doi: 10.1021/acs.jpcc.8b07181
N. Wang, J. Wang, J. Hu, et al., ACS Appl. Energy Mater. 1 (2018) 2866–2873.
doi: 10.1021/acsaem.8b00526
Z. Chen, Y. Bu, L. Wang, et al., Appl. Catal. B: Environ. 274 (2020) 119117.
doi: 10.1016/j.apcatb.2020.119117
M. Ou, S.P. Wan, Q. Zhong, et al., Int. J. Hydrogen Energy 42 (2017) 27043–27054.
doi: 10.1016/j.ijhydene.2017.09.047
S. Fang, X.R. Zhu, X.K. Liu, et al., Nat. Commun. 11 (2020) 1029.
doi: 10.1038/s41467-020-14848-2
G. Liu, Y. Huang, H. Lv, et al., Appl. Catal. B: Environ. 284 (2021) 119683.
doi: 10.1016/j.apcatb.2020.119683
X.H. Huang, Y.J. Xia, Y.J. Cao, et al., Nano Res. 10 (2017) 1302–1312.
doi: 10.1007/s12274-016-1416-z
Z. Chen, Y. Chen, S. Chao, et al., ACS Catal. 10 (2020) 1865–1870.
doi: 10.1021/acscatal.9b05212
C. Dong, C. Lian, S. Hu, et al., Nat. Commun. 9 (2018) 1252.
doi: 10.1038/s41467-018-03666-2
R. Li, W. Zhang, K. Zhou, Adv. Mater. 30 (2018) 1705512.
doi: 10.1002/adma.201705512
S. Wang, J. Lin, X. Wang, Phys. Chem. Chem. Phys. 16 (2014) 14656–14660.
doi: 10.1039/c4cp02173h
Y. Gong, B. Shao, J. Mei, et al., Nano Res. 15 (2021) 551–556.
Y. Li, B. Li, D. Zhang, et al., ACS Nano 14 (2020) 10552–10561.
doi: 10.1021/acsnano.0c04544
J. Yang, Z. Wang, J. Jiang, et al., Nano Energy 76 (2020) 105059.
doi: 10.1016/j.nanoen.2020.105059
X. Cui, X. Dai, A. -. E. Surkus, et al., Chinese J. Catal. 40 (2019) 1679–1685.
doi: 10.1016/S1872-2067(19)63316-4
Z.M. Migaszewski, A. Galuszka, Crit. Rev. Env. Sci. Technol. 45 (2015) 429–471.
doi: 10.1080/10643389.2013.866622
Z. Han, Y. Zhao, G. Gao, et al., Small 17 (2021) 2102089.
doi: 10.1002/smll.202102089
Sun Sijia , Ding Hao , Mei Lefu , Chen Ying , Hao Qiang , Chen Wanting , Xu Zhuoqun , Chen Daimei . Construction of SiO2-TiO2/g-C3N4 composite photocatalyst for hydrogen production and pollutant degradation: Insight into the effect of SiO2. Chinese Chemical Letters, 2020, 31(9): 2287-2294. doi: 10.1016/j.cclet.2020.03.026
Sharifah Bee Abd Hamid , Tong Ling Tan , Chin Wei Lai , Emy Marlina Samsudin . Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye. Chinese Journal of Catalysis, 2014, 35(12): 2014-2019. doi: 10.1016/S1872-2067(14)60210-2
Jian-Jun CHEN , Yong-Yu LI , Ya-Ping WANG , Tian-Lu CUI , Ai-Ling JIN , Xiao-Lin SHANG , Yan QIAO . Preparation and Photocatalytic Activity of C/g-C3N4/MoS2 Composites. Chinese Journal of Inorganic Chemistry, 2021, 37(5): 791-797. doi: 10.11862/CJIC.2021.104
DENG Jun-Yang , WANG Jie , ZHU Si-Long , NIE Long-Hui . Preparation and Performance of Ag3PO4/Ag2S/g-C3N4 Composite Photocatalyst. Chinese Journal of Inorganic Chemistry, 2019, 35(6): 955-964. doi: 10.11862/CJIC.2019.127
Hui-Na CUI , Wen-Bin DONG , Gang-Li LIAO , Zhen ZHAO , Yao YAO . Hydrogen evolution reaction performance of Se doped WO3·0.5H2O/g-C3N4 photo electrocatalyst. Chinese Journal of Inorganic Chemistry, 2023, 39(1): 109-116. doi: 10.11862/CJIC.2022.261
Li Han , Li Fang , Yu Jiaguo , Cao Shaowen . 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction. Acta Physico-Chimica Sinica, 2021, 37(8): 2010073-0. doi: 10.3866/PKU.WHXB202010073
Zhuonan Lei , Xinyi Ma , Xiaoyun Hu , Jun Fan , Enzhou Liu . Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions. Acta Physico-Chimica Sinica, 2022, 38(7): 2110049-0. doi: 10.3866/PKU.WHXB202110049
Shujin Shen , Cheng Han , Bing Wang , Yingde Wang . Engineering d-band center of nickel in nickel@nitrogen-doped carbon nanotubes array for electrochemical reduction of CO2 to CO and Zn-CO2 batteries. Chinese Chemical Letters, 2022, 33(8): 3721-3725. doi: 10.1016/j.cclet.2021.10.063
Si-Zhan Wu , Cai-Hong Chen , Wei-De Zhang . Etching graphitic carbon nitride by acid for enhanced photocatalytic activity toward degradation of 4-nitrophenol. Chinese Chemical Letters, 2014, 25(9): 1247-1251. doi: 10.1016/j.cclet.2014.05.017
Zuo-Peng Li , Ya-Qiong Wen , Jian-Peng Shang , Mei-Xia Wu , Long-Fei Wang , Yong Guo . Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts:Fabrication and photocatalytic activity. Chinese Chemical Letters, 2014, 25(2): 287-291.
Xingang Fei , Haiyan Tan , Bei Cheng , Bicheng Zhu , Liuyang Zhang . 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations. Acta Physico-Chimica Sinica, 2021, 37(6): 2010027-0. doi: 10.3866/PKU.WHXB202010027
Xiaoxiong Huang , Yingjie Ma , Linjie Zhi . Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction. Acta Physico-Chimica Sinica, 2022, 38(2): 2011050-0. doi: 10.3866/PKU.WHXB202011050
Zhiliang Jin , Yanbing Li , Xuqiang Hao . Ni, Co-Based Selenide Anchored g-C3N4 for Boosting Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2021, 37(10): 1912033-0. doi: 10.3866/PKU.WHXB201912033
Yanbing Li , Zhiliang Jin , Lijun Zhang , Kai Fan . Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019, 40(3): 390-402. doi: 10.1016/S1872-2067(18)63173-0
Keyvan Bijanzad , Azadeh Tadjarodi , Omid Akhavan . Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II). Chinese Journal of Catalysis, 2015, 36(5): 742-749. doi: 10.1016/S1872-2067(14)60305-3
PARK ChongYeon , GHOSH Trisha , MENG ZeDa , KEFAYAT Ullah , VIKRAM Nikam , OH WonChun . Preparation of CuS-graphene oxide/TiO2 composites designed for high photonic effect and photocatalytic activity under visible light. Chinese Journal of Catalysis, 2013, 34(4): 711-717. doi: 10.1016/S1872-2067(11)60502-0
R. M. Mohamed , E. Aazam . Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chinese Journal of Catalysis, 2013, 34(6): 1267-1273. doi: 10.1016/S1872-2067(12)60572-5
DUAN Li-Ying , LU Shan-Shan , DUAN Fang , CHEN Ming-Qing . Preparation and Photocatalytic Activity of Co3O4/g-C3N4 Composite Photocatalysts via One-Pot Synthesis. Chinese Journal of Inorganic Chemistry, 2019, 35(5): 793-802. doi: 10.11862/CJIC.2019.087
Chen Jun , Zhan Jing , Zhang Yumeng , Tang Yiwei . Construction of a novel ZnCo2O4/Bi2O3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Chinese Chemical Letters, 2019, 30(3): 735-738. doi: 10.1016/j.cclet.2018.08.020
Yucheng Yang , Wenya Wei , Peng He , Siwei Yang , Qinghong Yuan , Guqiao Ding , Zhi Liu , Xiaoming Xie . Stacking driven Raman spectra change of carbon based 2D semiconductor C3N. Chinese Chemical Letters, 2022, 33(5): 2600-2604. doi: 10.1016/j.cclet.2021.09.098