N, O-coupling towards the selectively electrochemical production of H2O2
-
* Corresponding authors.
E-mail addresses: gaoyang@nanoctr.cn (Y. Gao), zhanglp@buct.edu.cn (L. Zhang), wangb@nanoctr.cn (B. Wang).
Citation:
Shuaishuai Xu, Yang Gao, Tao Liang, Lipeng Zhang, Bin Wang. N, O-coupling towards the selectively electrochemical production of H2O2[J]. Chinese Chemical Letters,
;2022, 33(12): 5152-5157.
doi:
10.1016/j.cclet.2022.01.057
S.C. Perry, D. Pangotra, L. Vieira, et al., Nat. Rev. Chem. 3 (2019) 442–458.
doi: 10.1038/s41570-019-0110-6
Y. Sun, L. Han, P. Strasser, Chem. Soc. Rev. 49 (2020) 6605–6631.
doi: 10.1039/D0CS00458H
S. Yang, A. Verdaguer-Casadevall, L. Arnarson, et al., ACS Catal. 8 (2018) 4064–4081.
doi: 10.1021/acscatal.8b00217
M. Melchionna, P. Fornasiero, M. Prato, Adv. Mater. 31 (2019) 1802920.
doi: 10.1002/adma.201802920
Y. Yi, L. Wang, G. Li, H. Guo, Catal. Sci. Technol. 6 (2016) 1593–1610.
doi: 10.1039/C5CY01567G
J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Angew. Chem. Int. Ed. 45 (2006) 6962–6984.
doi: 10.1002/anie.200503779
J.K. Edwards, S.J. Freakley, A.F. Carley, C.J. Kiely, G.J. Hutchings, Acc. Chem. Res. 47 (2014) 845–854.
doi: 10.1021/ar400177c
Y. Lu, Y. Jiang, X. Gao, W. Chen, Chem. Commun. 50 (2014) 8464–8467.
doi: 10.1039/C4CC01841A
J.S. Jirkovsky, I. Panas, E. Ahlberg, et al., J. Am. Chem. Soc. 133 (2011) 19432–19441.
doi: 10.1021/ja206477z
S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, Nat. Mater. 12 (2013) 1137–1143.
doi: 10.1038/nmat3795
A. Verdaguer-Casadevall, D. Deiana, M. Karamad, et al., Nano Lett. 14 (2014) 1603–1608.
doi: 10.1021/nl500037x
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Chin. Chem. Lett. 29 (2018) 1757–1767.
doi: 10.1016/j.cclet.2018.11.021
Y. Bu, Y. Wang, G.F. Han, et al., Adv. Mater. (2021) 2103266.
L. Chen, X. Xu, W. Yang, J. Jia, Chin. Chem. Lett. 31 (2020) 626–634.
doi: 10.1016/j.cclet.2019.08.008
P.C. Shi, J.D. Yi, T.T. Liu, et al., J. Mater. Chem. A 5 (2017) 12322–12329.
doi: 10.1039/C7TA02999C
Z.Y. Lu, G.X. Chen, S. Siahrostami, et al., Nat. Catal. 1 (2018) 156–162.
doi: 10.1038/s41929-017-0017-x
A. Yu, G. Ma, L. Zhu, et al., Nanoscale 13 (2021) 15973–15980.
doi: 10.1039/D1NR04176B
H.W. Kim, M.B. Ross, N. Kornienko, et al., Nat. Catal. 1 (2018) 282–290.
doi: 10.1038/s41929-018-0044-2
K.H. Wu, D. Wang, X. Lu, et al., Chem 6 (2020) 1443–1458.
doi: 10.1016/j.chempr.2020.04.002
E. Murawski, N. Kananizadeh, S. Lindsay, A.M. Rao, S.C. Popat, J. Power Sources 481 (2021) 228992.
doi: 10.1016/j.jpowsour.2020.228992
Y.L. Wang, S.S. Li, X.H. Yang, et al., J. Mater. Chem. A 7 (2019) 21329–21337.
doi: 10.1039/C9TA04788C
F. Hasché, M. Oezaslan, P. Strasser, T.P. Fellinger, J. Energy Chem. 25 (2016) 251–257.
doi: 10.1016/j.jechem.2016.01.024
L. Han, Y. Sun, S. Li, et al., ACS Catal. 9 (2019) 1283–1288.
doi: 10.1021/acscatal.8b03734
J.S. Lim, J.H. Kim, J. Woo, et al., Chem 7 (2021) 1–17.
doi: 10.1016/j.chempr.2020.12.021
J.J. Xu, C.H. Xiao, S.J. Ding, Chin. Chem. Lett. 28 (2017) 748–754.
doi: 10.1016/j.cclet.2016.12.006
K. Dong, J. Liang, Y. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 10583–10587.
doi: 10.1002/anie.202101880
G.F. Han, F. Li, W. Zou, et al., Nat. Commun. 11 (2020) 2209.
doi: 10.1038/s41467-020-15782-z
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558–561.
doi: 10.1103/PhysRevB.47.558
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.
doi: 10.1103/PhysRevB.54.11169
P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864–B871.
doi: 10.1103/PhysRev.136.B864
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979.
doi: 10.1103/PhysRevB.50.17953
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758–1775.
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
doi: 10.1103/PhysRevLett.77.3865
S. Grimme, J. Comput. Chem. 27 (2006) 1787–1799.
doi: 10.1002/jcc.20495
H. Yu, L. Shang, T. Bian, et al., Adv. Mater. 28 (2016) 5080–5086.
doi: 10.1002/adma.201600398
S. Chen, T. Luo, K. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 16607–16614.
doi: 10.1002/anie.202104480
S. Chen, Z. Chen, S. Siahrostami, et al., J. Am. Chem. Soc. 140 (2018) 7851–7859.
doi: 10.1021/jacs.8b02798
J. Wu, A. Mehmood, G. Zhang, et al., ACS Catal. 11 (2021) 5035–5046.
doi: 10.1021/acscatal.0c05701
B.Q. Li, C.X. Zhao, J.N. Liu, Q. Zhang, Adv. Mater. 31 (2019) 1808173.
doi: 10.1002/adma.201808173
Y. Sun, L. Silvioli, N.R. Sahraie, et al., J. Am. Chem. Soc. 141 (2019) 12372–12381.
doi: 10.1021/jacs.9b05576
N. Yang, L. Li, J. Li, W. Ding, Z. Wei, Chem. Sci. 9 (2018) 5795–5804.
doi: 10.1039/C8SC01801D
Z. Wang, Q.K. Li, C. Zhang, et al., ACS Catal. 11 (2021) 2454–2459.
doi: 10.1021/acscatal.0c04735
Reza Ojani , Parisa Hamidi , Jahan-Bakhsh Raoof . Efficient nonenzymatic hydrogen peroxide sensor in acidic media based on Prussian blue nanoparticles-modified poly (o-phenylenediamine)/glassy carbon electrode. Chinese Chemical Letters, 2016, 27(03): 481-486. doi: 10.1016/j.cclet.2015.12.030
Yu-Jun Si , Zhong-Ping Xiong , Chang-Guo Chen , Ping Liu , Hui-Juan Wu . A non-precious metal catalyst for oxygen reduction prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride. Chinese Chemical Letters, 2013, 24(12): 1109-1111.
Yu Jun Si , Chang Guo Chen , Wei Yin , Hui Cai . Electrocatalytic activity of non-precious metal catalyst Co-N/C toward oxygen reduction reaction. Chinese Chemical Letters, 2010, 21(8): 983-986. doi: 10.1016/j.cclet.2010.03.030
Jie Wang , Ze-Xing Wu , Li-Li Han , Yuan-Yang Liu , Jun-Po Guo , Huolin L. Xin , De-Li Wang . Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. Chinese Chemical Letters, 2016, 27(4): 597-601.
Reza Ojani , Saeid Safshekan , Jahan-Bakhsh Raoof . Silver nanoparticle decorated poly(2-aminodiphenylamine) modified carbon paste electrode as a simple and efficient electrocatalyst for oxidation of formaldehyde. Chinese Journal of Catalysis, 2014, 35(9): 1565-1570. doi: 10.1016/S1872-2067(14)60115-7
Guangying Zhang , Xu Liu , Peng Yu , Di Shen , Bowen Liu , Qiwen Pan , Lei Wang , Honggang Fu . Fe3C coupled with Fe-Nx supported on N-doped carbon as oxygen reduction catalyst for assembling Zn-air battery to drive water splitting. Chinese Chemical Letters, 2022, 33(8): 3903-3908. doi: 10.1016/j.cclet.2021.11.075
Junsheng Chen , Jianfeng Huang , Hai Wang , Weihang Feng , Tianmi Luo , Yuzhu Hu , Chengke Yuan , Liyun Cao , Yanni Jie , Koji Kajiyoshi , Yongqiang Feng . Phase-mediated cobalt phosphide with unique core-shell architecture serving as efficient and bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reaction. Chinese Chemical Letters, 2022, 33(8): 3752-3756. doi: 10.1016/j.cclet.2021.11.063
Kuang-Hsu Wu , Da-Wei Wang , Qingcong Zeng , Yang Li , Ian R. Gentle . Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction. Chinese Journal of Catalysis, 2014, 35(6): 884-890. doi: 10.1016/S1872-2067(14)60108-X
Cheng-Wei Zhang , Lian-Bin Xu , Jian-Feng Chen . High loading Pt nanoparticles on ordered mesoporous carbon sphere arrays for highly active methanol electro-oxidation. Chinese Chemical Letters, 2016, 27(6): 832-836. doi: 10.1016/j.cclet.2016.02.025
Yitao Song , Yewang Peng , Shuang Yao , Peng Zhang , Yujie Wang , Jianmin Gu , Tongbu Lu , Zhiming Zhang . Co-POM@MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. Chinese Chemical Letters, 2022, 33(2): 1047-1050. doi: 10.1016/j.cclet.2021.08.045
Hassan HOSSEINI-MONFARED , Sohaila ALAVI , Milosz SICZEK . Synthesis, structural analysis and evaluation of the catalytic activity of a non-symmetric N-(salicylidene)diethylenetriamine complex of copper(II). Chinese Journal of Catalysis, 2013, 34(7): 1456-1461. doi: 10.1016/S1872-2067(12)60616-0
Dariush Khalili . Highly effi cient and regioselective thiocyanation of aromatic amines, anisols and activated phenols with H2O2/NH4SCN catalyzed by nanomagnetic Fe3O4. Chinese Chemical Letters, 2015, 26(5): 547-552. doi: 10.1016/j.cclet.2015.01.007
Kiumars Bahrami , Mohammad Mehdi Khodaei , Maryam Tajik , Vida Shakibaian . A novel approach towards dethioacetalization reactions with H2O2-SOCl2 system. Chinese Chemical Letters, 2012, 23(1): 81-85. doi: 10.1016/j.cclet.2011.09.011
Mei Xiu Kan , Xue Ji Wang , Hui Min Zhang . Detection of H2O2 at a composite film modified electrode with highly dispersed Ag nanoparticles in Nafion. Chinese Chemical Letters, 2011, 22(4): 458-460. doi: 10.1016/j.cclet.2010.12.009
Gholam Reza Najafi . A green and efficient oxidation of benzylic alcohols using H2O2 catalyzed by Montmorillonite-K10 supported MnCl2. Chinese Chemical Letters, 2010, 21(10): 1162-1164. doi: 10.1016/j.cclet.2010.05.031
Ali Ezabadi , Ghloam Reza Najafi , Mohammad M. Hashemi . A green and efficient oxidation of benzylic alcohols using H2O2 catalyzed by montmorillonite K-10 supported CoCl2. Chinese Chemical Letters, 2008, 19(11): 1277-1280. doi: 10.1016/j.cclet.2008.09.010
Ali Ezabadi , Gholam Reza Najafi , Mohammed M. Hashemi . A green and efficient deoximation using H2O2 catalyzed by montmorillonite-K10 supported COCl2. Chinese Chemical Letters, 2007, 18(12): 1451-1454. doi: 10.1016/j.cclet.2007.09.003
Hu Libing , Yu Feng , Yuan Huifang , Wang Gang , Liu Mincong , Wang Lina , Xue Xueyan , Peng Banghua , Tian Zhiqun , Dai Bin . Improved oxygen reduction reaction via a partially oxidized Co-CoO catalyst on N-doped carbon synthesized by a facile sand-bath method. Chinese Chemical Letters, 2019, 30(3): 624-629. doi: 10.1016/j.cclet.2018.10.039
Tianfang Yang , Ye Chen , Yang Liu , Xupo Liu , Shuyan Gao . Self-sacrificial template synthesis of Fe, N co-doped porous carbon as efficient oxygen reduction electrocatalysts towards Zn-air battery application. Chinese Chemical Letters, 2022, 33(4): 2171-2177. doi: 10.1016/j.cclet.2021.09.014