Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation
-
* Corresponding authors.
E-mail addresses: fujunwei@csu.edu.cn (J. Fu), minliu@csu.edu.cn (M. Liu).
Citation:
Shuandi Wang, Xiaodong Zhang, Guozhu Chen, Bao Liu, Hongmei Li, Junhua Hu, Junwei Fu, Min Liu. Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation[J]. Chinese Chemical Letters,
;2022, 33(12): 5208-5212.
doi:
10.1016/j.cclet.2022.01.055
Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Environ. Sci. Technol. 49 (2015) 6772–6782.
doi: 10.1021/acs.est.5b00729
Z. Cai, A.D. Dwivedi, W.N. Lee, et al., Environ. Sci. : Nano 5 (2018) 27–47.
doi: 10.1039/C7EN00644F
J. Duan, H. Ji, T. Xu, et al., Chem. Eng. J. 406 (2021) 126752.
doi: 10.1016/j.cej.2020.126752
J. Ma, L. Chen, Y. Liu, et al., J. Hazard. Mater. 418 (2021) 126180.
doi: 10.1016/j.jhazmat.2021.126180
S. Li, T. Huang, P. Du, W. Liu, J. Hu, Water Res. 185 (2020) 116286.
doi: 10.1016/j.watres.2020.116286
J. Yang, J.J. Pignatello, B. Pan, B. Xing, Environ. Sci. Technol. 51 (2017) 8972–8980.
doi: 10.1021/acs.est.7b01087
U. Jans, C. Prasse, U. von Gunten, Environ. Sci. Technol. 55 (2021) 3313–3321.
doi: 10.1021/acs.est.0c07662
Y. Wang, C. Zhou, J. Wu, J. Niu, Chin. Chem. Lett. 31 (2020) 2673–2677.
doi: 10.1016/j.cclet.2020.03.073
Y. Zhou, Y. Gao, S.Y. Pang, et al., Water Res. 145 (2018) 210–219.
doi: 10.1016/j.watres.2018.08.026
Y. Zhang, C. Liu, B. Xu, F. Qi, W. Chu, Appl. Catal. B 199 (2016) 447–457.
doi: 10.1016/j.apcatb.2016.06.003
L. Ling, Y. Liu, D. Pan, et al., Chem. Eng. J. 381 (2020) 122607.
doi: 10.1016/j.cej.2019.122607
X. Yang, X. Cheng, A.A. Elzatahry, et al., Chin. Chem. Lett. 30 (2019) 324–330.
doi: 10.1016/j.cclet.2018.06.026
S. Chen, T. Luo, K. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 16607–16614.
doi: 10.1002/anie.202104480
J. Zheng, D. Song, H. Chen, et al., Chin. Chem. Lett. 31 (2020) 1109–1113.
doi: 10.1016/j.cclet.2019.09.037
J. Zhan, M. Li, X. Zhang, et al., Chin. Chem. Lett. 31 (2020) 715–720.
doi: 10.1016/j.cclet.2019.09.001
B. Shen, C. Dong, J. Ji, M. Xing, J. Zhang, Chin. Chem. Lett. 30 (2019) 2205–2210.
doi: 10.1016/j.cclet.2019.09.052
C. Guo, D. Yue, S. Wang, X. Qian, Y. Zhao, Chin. Chem. Lett. 31 (2020) 1978–1981.
doi: 10.1016/j.cclet.2019.11.049
Z. Wang, M. Liu, F. Xiao, et al., Chin. Chem. Lett. 33 (2022) 653–662.
doi: 10.3390/machines10080653
Z. Guo, Y. Xie, J. Xiao, et al., J. Am. Chem. Soc. 141 (2019) 12005–12010.
doi: 10.1021/jacs.9b04569
S. Afzal, X. Quan, J. Zhang, Appl. Catal. B 206 (2017) 692–703.
doi: 10.1016/j.apcatb.2017.01.072
Y. Ding, J. Wang, S. Xu, K.Y.A. Lin, S. Tong, Sep. Purif. Technol. 207 (2018) 92–98.
doi: 10.1016/j.seppur.2018.06.027
Y. Lee, D. Gerrity, M. Lee, et al., Environ. Sci. Technol. 50 (2016) 3809–3819.
doi: 10.1021/acs.est.5b04904
Y. Yao, Y. Cai, G. Wu, et al., J. Hazard. Mater. 296 (2015) 128–137.
doi: 10.1016/j.jhazmat.2015.04.014
X. Ao, W. Liu, Chem. Eng. J. 313 (2017) 629–637.
doi: 10.1016/j.cej.2016.12.089
M. Du, Q. Yi, J. Ji, et al., Chin. Chem. Lett. 31 (2020) 2803–2808.
doi: 10.1016/j.cclet.2020.08.002
S. Zhu, S.H. Ho, C. Jin, X. Duan, S. Wang, Environ. Sci. -Nano 7 (2020) 368–396.
doi: 10.1039/c9en01250h
X. Yan, Y. Song, X. Wu, et al., Nanoscale 9 (2017) 2317–2323.
doi: 10.1039/C6NR08473G
H. Liang, R. Liu, X. An, et al., Chem. Eng. J. 414 (2021) 128669.
doi: 10.1016/j.cej.2021.128669
H. Li, J. Shang, Z. Yang, et al., Environ. Sci. Technol. 51 (2017) 5685–5694.
doi: 10.1021/acs.est.7b00040
M. Liu, Z. Feng, X. Luan, et al., Environ. Sci. Technol. 55 (2021) 6042–6051.
doi: 10.1021/acs.est.0c08018
X. Qi, H. Tian, X. Dang, et al., Anal. Methods 11 (2019) 1111–1124.
doi: 10.1039/c8ay02514b
J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K.J. Stevenson, Nat. Mater. 13 (2014) 726–732.
doi: 10.1038/nmat4000
C. Li, X. Han, F. Cheng, et al., Nat. Commun. 6 (2015) 7345.
doi: 10.1038/ncomms8345
L. Luo, Y. Zhang, F. Li, et al., Anal. Chim. Acta 788 (2013) 46–51.
doi: 10.1016/j.aca.2013.06.028
M. Li, Y. Xiong, X. Liu, et al., Nanoscale 7 (2015) 8920–8930.
doi: 10.1039/C4NR07243J
S. Saha, S.B. Abd Hamid, RSC Adv. 6 (2016) 96314–96326.
doi: 10.1039/C6RA21221B
H. Li, K. Liu, J. Fu, et al., Nano Energy 82 (2021) 105767.
doi: 10.1016/j.nanoen.2021.105767
X. Mi, Y. Li, X. Ning, et al., Chem. Eng. J. 358 (2019) 299–309.
doi: 10.1016/j.cej.2018.10.047
K. Chen, H. Li, Y. Xu, et al., Nanoscale 11 (2019) 5967–5973.
doi: 10.1039/c9nr01637f
J. Fu, L. Zhu, K. Jiang, et al., Chem. Eng. J. 415 (2021) 128982.
doi: 10.1016/j.cej.2021.128982
K. Chen, K. Liu, P. An, et al., Nat. Commun. 11 (2020) 4173.
doi: 10.1038/s41467-020-18062-y
R. Yuan, H. Li, X.A. Zhang, et al., J. Energy Storage 29 (2020) 101300.
doi: 10.1016/j.est.2020.101300
J. Fu, K. Liu, K. Jiang, et al., Adv. Sci. 6 (2019) 1900796.
doi: 10.1002/advs.201900796
X. Xie, C. Ni, Z. Lin, et al., Chem. Eng. J. 396 (2020) 125205.
doi: 10.1016/j.cej.2020.125205
L. Pi, N. Yang, W. Han, et al., Chem. Eng. J. 334 (2018) 1297–1308.
doi: 10.1016/j.cej.2017.11.006
K. Lei, X. Han, Y. Hu, et al., Chem. Commun. 51 (2015) 11599–11602.
doi: 10.1039/C5CC03155A
K. Cheng, F. Yang, G. Wang, J. Yin, D. Cao, J. Mater. Chem. A 1 (2013) 1669–1676.
doi: 10.1039/C2TA00219A
Z. Wang, B. Song, J. Li, X. Teng, Chemosphere 270 (2021) 128652.
doi: 10.1016/j.chemosphere.2020.128652
Y. Zhang, X. Xu, J. Cai, Y. Pan, M. Zhou, Chemosphere 266 (2021) 129063.
doi: 10.1016/j.chemosphere.2020.129063
C. Ma, S. Feng, J. Zhou, et al., Appl. Catal. B 259 (2019) 118015.
doi: 10.1016/j.apcatb.2019.118015
Y. Qin, Y. Sun, Y. Li, et al., Chin. Chem. Lett. 31 (2020) 774–778.
doi: 10.1016/j.cclet.2019.09.016
P. Thanekar, P.R. Gogate, Sep. Purif. Technol. 239 (2020) 116563.
doi: 10.1016/j.seppur.2020.116563
J. Duan, H. Ji, X. Zhao, et al., Chem. Eng. J. 393 (2020) 124692.
doi: 10.1016/j.cej.2020.124692
J. Duan, H. Ji, W. Liu, et al., Chem. Eng. J. 359 (2019) 1617–1628.
doi: 10.1016/j.cej.2018.11.008
H. Liang, R. Liu, C. Hu, et al., J. Hazard. Mater. 406 (2021) 0304–3894.
M. Yu, H. Liang, R. Zhan, L. Xu, J. Niu, Chin. Chem. Lett. 32 (2021) 2155–2158.
doi: 10.1016/j.cclet.2020.11.069
F. Yang, X. Chu, J. Sun, et al., Chin. Chem. Lett. 31 (2020) 2784–2788.
doi: 10.1016/j.cclet.2020.07.033
Q. Yang, Z. Feng, M. Liu, et al., Chin. Chem. Lett. 32 (2021) 3393–3397.
doi: 10.1016/j.cclet.2021.1005.1066
C. Dong, J. Ji, B. Shen, M. Xing, J. Zhang, Environ. Sci. Technol. 52 (2018) 11297–11308.
doi: 10.1021/acs.est.8b02403
N. Yan, F. Liu, Q. Xue, et al., Chem. Eng. J. 274 (2015) 61–68.
doi: 10.1016/j.cej.2015.03.056
H. Zhang, W. Yang, I.I. Roslan, S. Jaenicke, G.K. Chuah, J. Catal. 375 (2019) 56–67.
doi: 10.1016/j.jcat.2019.05.020
A.N. Naveen, S. Selladurai, Electrochim. Acta 125 (2014) 404–414.
doi: 10.1016/j.electacta.2014.01.161
Y. Lin, K. Liu, K. Chen, et al., ACS Catal. 11 (2021) 6304–6315.
doi: 10.1021/acscatal.0c04966
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
Hui Wang , Haodong Ji , Dandan Zhang , Xudong Yang , Hanchun Chen , Chunqian Jiang , Weiliang Sun , Jun Duan , Wen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200
Xian-Rui Meng , Qian Chen , Mei-Feng Wu , Qiang Wu , Su-Qin Wang , Li-Ping Jin , Fan Zhou , Ren-Li Ma , Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140
Chu Wu , Zhichao Dong , Jinfang Hou , Jian Peng , Shuangyu Wu , Xiaofang Wang , Xiangwei Kong , Yue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Hanghang Zhao , Wenbo Qi , Xin Tan , Xing Xu , Fengmin Song , Xianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898
Zhaomin Tang , Qian He , Jianren Zhou , Shuang Yan , Li Jiang , Yudong Wang , Chenxing Yao , Huangzhao Wei , Keda Yang , Jiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Haoyu Luo , Jinsong Chen , Mengfei Luo , Hui Ma , Shengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
Huijuan Li , Zhu Wang , Jiagen Geng , Ruiping Song , Xiaoyin Liu , Chaochen Fu , Si Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049