Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation
-
* Corresponding authors.
E-mail addresses: fujunwei@csu.edu.cn (J. Fu), minliu@csu.edu.cn (M. Liu).
Citation:
Shuandi Wang, Xiaodong Zhang, Guozhu Chen, Bao Liu, Hongmei Li, Junhua Hu, Junwei Fu, Min Liu. Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation[J]. Chinese Chemical Letters,
;2022, 33(12): 5208-5212.
doi:
10.1016/j.cclet.2022.01.055
Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Environ. Sci. Technol. 49 (2015) 6772–6782.
doi: 10.1021/acs.est.5b00729
Z. Cai, A.D. Dwivedi, W.N. Lee, et al., Environ. Sci. : Nano 5 (2018) 27–47.
doi: 10.1039/C7EN00644F
J. Duan, H. Ji, T. Xu, et al., Chem. Eng. J. 406 (2021) 126752.
doi: 10.1016/j.cej.2020.126752
J. Ma, L. Chen, Y. Liu, et al., J. Hazard. Mater. 418 (2021) 126180.
doi: 10.1016/j.jhazmat.2021.126180
S. Li, T. Huang, P. Du, W. Liu, J. Hu, Water Res. 185 (2020) 116286.
doi: 10.1016/j.watres.2020.116286
J. Yang, J.J. Pignatello, B. Pan, B. Xing, Environ. Sci. Technol. 51 (2017) 8972–8980.
doi: 10.1021/acs.est.7b01087
U. Jans, C. Prasse, U. von Gunten, Environ. Sci. Technol. 55 (2021) 3313–3321.
doi: 10.1021/acs.est.0c07662
Y. Wang, C. Zhou, J. Wu, J. Niu, Chin. Chem. Lett. 31 (2020) 2673–2677.
doi: 10.1016/j.cclet.2020.03.073
Y. Zhou, Y. Gao, S.Y. Pang, et al., Water Res. 145 (2018) 210–219.
doi: 10.1016/j.watres.2018.08.026
Y. Zhang, C. Liu, B. Xu, F. Qi, W. Chu, Appl. Catal. B 199 (2016) 447–457.
doi: 10.1016/j.apcatb.2016.06.003
L. Ling, Y. Liu, D. Pan, et al., Chem. Eng. J. 381 (2020) 122607.
doi: 10.1016/j.cej.2019.122607
X. Yang, X. Cheng, A.A. Elzatahry, et al., Chin. Chem. Lett. 30 (2019) 324–330.
doi: 10.1016/j.cclet.2018.06.026
S. Chen, T. Luo, K. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 16607–16614.
doi: 10.1002/anie.202104480
J. Zheng, D. Song, H. Chen, et al., Chin. Chem. Lett. 31 (2020) 1109–1113.
doi: 10.1016/j.cclet.2019.09.037
J. Zhan, M. Li, X. Zhang, et al., Chin. Chem. Lett. 31 (2020) 715–720.
doi: 10.1016/j.cclet.2019.09.001
B. Shen, C. Dong, J. Ji, M. Xing, J. Zhang, Chin. Chem. Lett. 30 (2019) 2205–2210.
doi: 10.1016/j.cclet.2019.09.052
C. Guo, D. Yue, S. Wang, X. Qian, Y. Zhao, Chin. Chem. Lett. 31 (2020) 1978–1981.
doi: 10.1016/j.cclet.2019.11.049
Z. Wang, M. Liu, F. Xiao, et al., Chin. Chem. Lett. 33 (2022) 653–662.
doi: 10.3390/machines10080653
Z. Guo, Y. Xie, J. Xiao, et al., J. Am. Chem. Soc. 141 (2019) 12005–12010.
doi: 10.1021/jacs.9b04569
S. Afzal, X. Quan, J. Zhang, Appl. Catal. B 206 (2017) 692–703.
doi: 10.1016/j.apcatb.2017.01.072
Y. Ding, J. Wang, S. Xu, K.Y.A. Lin, S. Tong, Sep. Purif. Technol. 207 (2018) 92–98.
doi: 10.1016/j.seppur.2018.06.027
Y. Lee, D. Gerrity, M. Lee, et al., Environ. Sci. Technol. 50 (2016) 3809–3819.
doi: 10.1021/acs.est.5b04904
Y. Yao, Y. Cai, G. Wu, et al., J. Hazard. Mater. 296 (2015) 128–137.
doi: 10.1016/j.jhazmat.2015.04.014
X. Ao, W. Liu, Chem. Eng. J. 313 (2017) 629–637.
doi: 10.1016/j.cej.2016.12.089
M. Du, Q. Yi, J. Ji, et al., Chin. Chem. Lett. 31 (2020) 2803–2808.
doi: 10.1016/j.cclet.2020.08.002
S. Zhu, S.H. Ho, C. Jin, X. Duan, S. Wang, Environ. Sci. -Nano 7 (2020) 368–396.
doi: 10.1039/c9en01250h
X. Yan, Y. Song, X. Wu, et al., Nanoscale 9 (2017) 2317–2323.
doi: 10.1039/C6NR08473G
H. Liang, R. Liu, X. An, et al., Chem. Eng. J. 414 (2021) 128669.
doi: 10.1016/j.cej.2021.128669
H. Li, J. Shang, Z. Yang, et al., Environ. Sci. Technol. 51 (2017) 5685–5694.
doi: 10.1021/acs.est.7b00040
M. Liu, Z. Feng, X. Luan, et al., Environ. Sci. Technol. 55 (2021) 6042–6051.
doi: 10.1021/acs.est.0c08018
X. Qi, H. Tian, X. Dang, et al., Anal. Methods 11 (2019) 1111–1124.
doi: 10.1039/c8ay02514b
J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K.J. Stevenson, Nat. Mater. 13 (2014) 726–732.
doi: 10.1038/nmat4000
C. Li, X. Han, F. Cheng, et al., Nat. Commun. 6 (2015) 7345.
doi: 10.1038/ncomms8345
L. Luo, Y. Zhang, F. Li, et al., Anal. Chim. Acta 788 (2013) 46–51.
doi: 10.1016/j.aca.2013.06.028
M. Li, Y. Xiong, X. Liu, et al., Nanoscale 7 (2015) 8920–8930.
doi: 10.1039/C4NR07243J
S. Saha, S.B. Abd Hamid, RSC Adv. 6 (2016) 96314–96326.
doi: 10.1039/C6RA21221B
H. Li, K. Liu, J. Fu, et al., Nano Energy 82 (2021) 105767.
doi: 10.1016/j.nanoen.2021.105767
X. Mi, Y. Li, X. Ning, et al., Chem. Eng. J. 358 (2019) 299–309.
doi: 10.1016/j.cej.2018.10.047
K. Chen, H. Li, Y. Xu, et al., Nanoscale 11 (2019) 5967–5973.
doi: 10.1039/c9nr01637f
J. Fu, L. Zhu, K. Jiang, et al., Chem. Eng. J. 415 (2021) 128982.
doi: 10.1016/j.cej.2021.128982
K. Chen, K. Liu, P. An, et al., Nat. Commun. 11 (2020) 4173.
doi: 10.1038/s41467-020-18062-y
R. Yuan, H. Li, X.A. Zhang, et al., J. Energy Storage 29 (2020) 101300.
doi: 10.1016/j.est.2020.101300
J. Fu, K. Liu, K. Jiang, et al., Adv. Sci. 6 (2019) 1900796.
doi: 10.1002/advs.201900796
X. Xie, C. Ni, Z. Lin, et al., Chem. Eng. J. 396 (2020) 125205.
doi: 10.1016/j.cej.2020.125205
L. Pi, N. Yang, W. Han, et al., Chem. Eng. J. 334 (2018) 1297–1308.
doi: 10.1016/j.cej.2017.11.006
K. Lei, X. Han, Y. Hu, et al., Chem. Commun. 51 (2015) 11599–11602.
doi: 10.1039/C5CC03155A
K. Cheng, F. Yang, G. Wang, J. Yin, D. Cao, J. Mater. Chem. A 1 (2013) 1669–1676.
doi: 10.1039/C2TA00219A
Z. Wang, B. Song, J. Li, X. Teng, Chemosphere 270 (2021) 128652.
doi: 10.1016/j.chemosphere.2020.128652
Y. Zhang, X. Xu, J. Cai, Y. Pan, M. Zhou, Chemosphere 266 (2021) 129063.
doi: 10.1016/j.chemosphere.2020.129063
C. Ma, S. Feng, J. Zhou, et al., Appl. Catal. B 259 (2019) 118015.
doi: 10.1016/j.apcatb.2019.118015
Y. Qin, Y. Sun, Y. Li, et al., Chin. Chem. Lett. 31 (2020) 774–778.
doi: 10.1016/j.cclet.2019.09.016
P. Thanekar, P.R. Gogate, Sep. Purif. Technol. 239 (2020) 116563.
doi: 10.1016/j.seppur.2020.116563
J. Duan, H. Ji, X. Zhao, et al., Chem. Eng. J. 393 (2020) 124692.
doi: 10.1016/j.cej.2020.124692
J. Duan, H. Ji, W. Liu, et al., Chem. Eng. J. 359 (2019) 1617–1628.
doi: 10.1016/j.cej.2018.11.008
H. Liang, R. Liu, C. Hu, et al., J. Hazard. Mater. 406 (2021) 0304–3894.
M. Yu, H. Liang, R. Zhan, L. Xu, J. Niu, Chin. Chem. Lett. 32 (2021) 2155–2158.
doi: 10.1016/j.cclet.2020.11.069
F. Yang, X. Chu, J. Sun, et al., Chin. Chem. Lett. 31 (2020) 2784–2788.
doi: 10.1016/j.cclet.2020.07.033
Q. Yang, Z. Feng, M. Liu, et al., Chin. Chem. Lett. 32 (2021) 3393–3397.
doi: 10.1016/j.cclet.2021.1005.1066
C. Dong, J. Ji, B. Shen, M. Xing, J. Zhang, Environ. Sci. Technol. 52 (2018) 11297–11308.
doi: 10.1021/acs.est.8b02403
N. Yan, F. Liu, Q. Xue, et al., Chem. Eng. J. 274 (2015) 61–68.
doi: 10.1016/j.cej.2015.03.056
H. Zhang, W. Yang, I.I. Roslan, S. Jaenicke, G.K. Chuah, J. Catal. 375 (2019) 56–67.
doi: 10.1016/j.jcat.2019.05.020
A.N. Naveen, S. Selladurai, Electrochim. Acta 125 (2014) 404–414.
doi: 10.1016/j.electacta.2014.01.161
Y. Lin, K. Liu, K. Chen, et al., ACS Catal. 11 (2021) 6304–6315.
doi: 10.1021/acscatal.0c04966
João Restivo , Raquel P. Rocha , Adrián M. T. Silva , José J. M. Órfão , Manuel F. R. Pereira , José L. Figueiredo . Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Chinese Journal of Catalysis, 2014, 35(6): 896-905. doi: 10.1016/S1872-2067(14)60103-0
Zhi Chao Wang , Lai Jun Wang , Ping Zhang , Song Zhe Chen , Jing Ming Xu , Jing Chen . Effect of preparation methods on Pt/alumina catalysts for the hydrogen iodide catalytic decomposition. Chinese Chemical Letters, 2009, 20(1): 102-105. doi: 10.1016/j.cclet.2008.09.059
Qing Hua Zhang , Shou Feng Wang , Zi Qiang Lei . Baeyer-Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-aniline complex. Chinese Chemical Letters, 2007, 18(1): 4-6. doi: 10.1016/j.cclet.2006.11.036
Xue Ming Chen , Djalma Ribeiro da Silva , Carlos A. Martínez-Huitle . Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters. Chinese Chemical Letters, 2010, 21(1): 101-104. doi: 10.1016/j.cclet.2009.08.001
Zhu Meng , Zhang Longshuai , Liu Shanshan , Wang Dengke , Qin Yuancheng , Chen Ying , Dai Weili , Wang Yuehua , Xing Qiuju , Zou Jianping . Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode. Chinese Chemical Letters, 2020, 31(7): 1961-1965. doi: 10.1016/j.cclet.2020.01.017
Shu-Qin Cui , Xu-Yang Ji , Fu-Xin Liang , Zhen-Zhong Yang . Ionic liquid functionalized polymer composite nanotubes toward dye decomposition. Chinese Chemical Letters, 2015, 26(8): 942-945. doi: 10.1016/j.cclet.2015.04.034
Hassan HOSSEINI-MONFARED , Sohaila ALAVI , Milosz SICZEK . Synthesis, structural analysis and evaluation of the catalytic activity of a non-symmetric N-(salicylidene)diethylenetriamine complex of copper(II). Chinese Journal of Catalysis, 2013, 34(7): 1456-1461. doi: 10.1016/S1872-2067(12)60616-0
Changjiu Xia , Long Ju , Yi Zhao , Hongyi Xu , Bin Zhu , Feifei Gao , Min Lin , Zhenyu Dai , Xiaodong Zou , Xingtian Shu . Heterogeneous oxidation of cyclohexanone catalyzed by TS-1: Combined experimental and DFT studies. Chinese Journal of Catalysis, 2015, 36(6): 845-854. doi: 10.1016/S1872-2067(15)60859-2
Zhi Huan Weng , Jin Yan Wang , Xi Gao Jian . Efficient oxidation of benzyl alcohol with heteropolytungstate as reaction-controlled phase-transfer catalyst. Chinese Chemical Letters, 2007, 18(8): 936-938. doi: 10.1016/j.cclet.2007.06.007
Gholam Reza Najafi . A green and efficient oxidation of benzylic alcohols using H2O2 catalyzed by Montmorillonite-K10 supported MnCl2. Chinese Chemical Letters, 2010, 21(10): 1162-1164. doi: 10.1016/j.cclet.2010.05.031
Ali Ezabadi , Ghloam Reza Najafi , Mohammad M. Hashemi . A green and efficient oxidation of benzylic alcohols using H2O2 catalyzed by montmorillonite K-10 supported CoCl2. Chinese Chemical Letters, 2008, 19(11): 1277-1280. doi: 10.1016/j.cclet.2008.09.010
YUAN Mingming , LI Difan , ZHAO Xiuge , MA Wenbao , KONG Kang , NI Wenxiu , GU Qingwen , HOU Zhenshan . Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst. Acta Physico-Chimica Sinica, 2018, 34(8): 886-895. doi: 10.3866/PKU.WHXB201711151
Reza Ojani , Parisa Hamidi , Jahan-Bakhsh Raoof . Efficient nonenzymatic hydrogen peroxide sensor in acidic media based on Prussian blue nanoparticles-modified poly (o-phenylenediamine)/glassy carbon electrode. Chinese Chemical Letters, 2016, 27(03): 481-486. doi: 10.1016/j.cclet.2015.12.030
Zong Yuan Chen , Wei Zhang . Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid. Chinese Chemical Letters, 2007, 18(12): 1443-1446. doi: 10.1016/j.cclet.2007.10.010
Du Junqun , Zhang Baogang , Li Jiaxin , Lai Bo . Decontamination of heavy metal complexes by advanced oxidation processes: A review. Chinese Chemical Letters, 2020, 31(10): 2575-2582. doi: 10.1016/j.cclet.2020.07.050
Ruicheng Ji , Jiabin Chen , Tongcai Liu , Xuefei Zhou , Yalei Zhang . Critical review of perovskites-based advanced oxidation processes for wastewater treatment: Operational parameters, reaction mechanisms, and prospects. Chinese Chemical Letters, 2022, 33(2): 643-652. doi: 10.1016/j.cclet.2021.07.043
Ke Tian , Limin Hu , Letian Li , Qingzhu Zheng , Yanjun Xin , Guangshan Zhang . Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chinese Chemical Letters, 2022, 33(10): 4461-4477. doi: 10.1016/j.cclet.2021.12.042
Jiali Peng , Yongli He , Chenying Zhou , Shijun Su , Bo Lai . The carbon nanotubes-based materials and their applications for organic pollutant removal: A critical review. Chinese Chemical Letters, 2021, 32(5): 1626-1636. doi: 10.1016/j.cclet.2020.10.026
Lei Xiaoman , You Menghan , Pan Fei , Liu Min , Yang Peng , Xia Dongsheng , Li Qiang , Wang Yanting , Fu Jie . CuFe2O4@GO nanocomposite as an effective and recoverable catalyst of peroxymonosulfate activation for degradation of aqueous dye pollutants. Chinese Chemical Letters, 2019, 30(12): 2216-2220. doi: 10.1016/j.cclet.2019.05.039