Environmental applications of graphene oxide composite membranes
-
* Corresponding author.
E-mail addresses: bcliu@scu.edu.cn, baicangliu@gmail.com (B. Liu).
Citation:
Yihua Li, Jiao Jiao, Qidong Wu, Qi Song, Wancen Xie, Baicang Liu. Environmental applications of graphene oxide composite membranes[J]. Chinese Chemical Letters,
;2022, 33(12): 5001-5012.
doi:
10.1016/j.cclet.2022.01.034
M. Hu, B.X. Mi, Environ. Sci. Technol. 47 (2013) 3715–3723.
doi: 10.1021/es400571g
F. Perreault, A.F. de Faria, M. Elimelech, Chem. Soc. Rev. 44 (2015) 5861–5896.
doi: 10.1039/C5CS00021A
S. Sharif, K.S. Ahmad, F. Rehman, Z. Bhatti, K.H. Thebo, J. Environ. Chem. Eng. 9 (2021) 105605.
doi: 10.1016/j.jece.2021.105605
P. Wang, M. Wang, F. Liu, et al., Nat. Commun. 9 (2018) 569.
doi: 10.1038/s41467-018-02941-6
N.D. Koromilas, C. Anastasopoulos, E.K. Oikonomou, J.K. Kallitsis, Polymers (Basel) 11 (2019) 59.
doi: 10.3390/polym11010059
M. Bassyouni, M.H. Abdel-Aziz, M.S. Zoromba, S.M.S. Abdel-Hamid, E. Drioli, J. Ind. Eng. Chem. 73 (2019) 19–46.
doi: 10.1016/j.jiec.2019.01.045
A. Spoială, C.I. Ilie, D. Ficai, A. Ficai, E. Andronescu, Materials (Basel) 14 (2021) 2091.
doi: 10.3390/ma14092091
Y. Li, J. Li, R. Bahamonde Soria, A. Volodine, B. Van der Bruggen, J. Membr. Sci. 603 (2020) 118002.
doi: 10.1016/j.memsci.2020.118002
Y. Li, T. Verbiest, I. Vankelecom, J. Membr. Sci. 428 (2013) 63–69.
doi: 10.1016/j.memsci.2012.10.050
F. Fei, L. Cseri, G. Szekely, C.F. Blanford, ACS Appl. Mater. Interfaces 10 (2018) 16140–16147.
doi: 10.1021/acsami.8b03591
M. Farahani, D. Hua, T.S. Chung, J. Membr. Sci. 548 (2018) 319–331.
doi: 10.1016/j.memsci.2017.11.037
R. Wang, C. Xu, J. Sun, L. Gao, C. Lin, J. Mater. Chem. A 1 (2013) 1794–1800.
doi: 10.1039/C2TA00753C
Y. Li, B. Cao, P. Li, Appl. Surf. Sci. 473 (2019) 1038–1048.
doi: 10.1016/j.apsusc.2018.12.245
W.H. Zhang, M.J. Yin, Q. Zhao, et al., Nat. Nanotechnol. 16 (2021) 337–343.
doi: 10.1038/s41565-020-00833-9
H. Li, X.M. Xie, Chin. Chem. Lett. 29 (2018) 161–165.
doi: 10.1016/j.cclet.2017.06.001
N. Zhang, W. Qi, L. Huang, et al., Chin. J. Chem. Eng. 27 (2019) 1348–1360.
doi: 10.1016/j.cjche.2019.01.001
X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41 (2012) 666–686.
doi: 10.1039/C1CS15078B
L.J. Cote, J. Kim, V.C. Tung, et al., Pure Appl. Chem. 83 (2011) 95–110.
R. Casadei, M. Giacinti Baschetti, M.J. Yoo, H.B. Park, L. Giorgini, Membranes 10 (2020) 188.
doi: 10.3390/membranes10080188
C. Wang, M.J. Park, D.H. Seo, et al., Sep. Purif. Technol. 268 (2021) 118657.
doi: 10.1016/j.seppur.2021.118657
W. Zhong, Y. Zhang, L. Zhao, W. Li, Chin. Chem. Lett. 31 (2020) 2651–2656.
doi: 10.1016/j.cclet.2020.03.033
R.G. Xing, Y.N. Li, B.W. Zhang, et al., Chin. Chem. Lett. 28 (2017) 407–411.
doi: 10.1016/j.cclet.2016.10.017
L. Chen, G. Shi, J. Shen, et al., Nature 550 (2017) 380–383.
doi: 10.1038/nature24044
H.M. Hegab, L. Zou, J. Membr. Sci. 484 (2015) 95–106.
doi: 10.1016/j.memsci.2015.03.011
A. Anand, B. Unnikrishnan, J.Y. Mao, H.J. Lin, C.C. Huang, Desalination 429 (2018) 119–133.
doi: 10.1016/j.desal.2017.12.012
M. Zhu, Y. Liu, M. Chen, et al., Chin. Chem. Lett. 31 (2020) 2683–2688.
doi: 10.1016/j.cclet.2020.04.011
R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Science 335 (2012) 442–444.
doi: 10.1126/science.1211694
X. Zhao, Z. Tong, X. Liu, J. Wang, B. Zhang, Ind. Eng. Chem. Res. 59 (2020) 12232–12238.
doi: 10.1021/acs.iecr.0c01417
C. Chi, X. Wang, Y. Peng, et al., Chem. Mat. 28 (2016) 2921–2927.
doi: 10.1021/acs.chemmater.5b04475
M. Asadollahi, D. Bastani, S.A. Musavi, Desalination 420 (2017) 330–383.
doi: 10.1016/j.desal.2017.05.027
R.H. Hailemariam, Y.C. Woo, M.M. Damtie, et al., Adv. Colloid Interface Sci. 276 (2020) 102100.
doi: 10.1016/j.cis.2019.102100
Y.L. Xing, G.R. Xu, Z.H. An, et al., Sep. Purif. Technol. 259 (2021) 118192.
doi: 10.1016/j.seppur.2020.118192
K. Sint, B. Wang, P. Kral, J. Am. Chem. Soc. 130 (2008) 16448–16449.
doi: 10.1021/ja804409f
K. Huang, G. Liu, Y. Lou, et al., Angew. Chem. Int. Edit. 53 (2014) 6929–6932.
doi: 10.1002/anie.201401061
S.G. Kim, D.H. Hyeon, J.H. Chun, B.H. Chun, S.H. Kim, Desalin. Water Treat. 51 (2013) 6338–6345.
doi: 10.1080/19443994.2013.780994
X. Wang, L.J. Zhi, K. Mullen, Nano Lett. 8 (2008) 323–327.
doi: 10.1021/nl072838r
Y.Y. Lou, G.P. Liu, S.N. Liu, J. Shen, W.Q. Jin, Appl. Surf. Sci. 307 (2014) 631–637.
doi: 10.1016/j.apsusc.2014.04.088
H.A. Becerril, J. Mao, Z. Liu, et al., ACS Nano 2 (2008) 463–470.
doi: 10.1021/nn700375n
V.H. Pham, T.V. Cuong, S.H. Hur, et al., Carbon 48 (2010) 1945–1951.
doi: 10.1016/j.carbon.2010.01.062
K. Xu, B. Feng, C. Zhou, A. Huang, Chem. Eng. Sci. 146 (2016) 159–165.
doi: 10.1016/j.ces.2016.03.003
S.O. Badmus, T.A. Oyehan, T.A. Saleh, J. Mol. Liq. 340 (2021) 116991.
doi: 10.1016/j.molliq.2021.116991
F. Dai, R. Yu, R. Yi, et al., Chem. Commun. 56 (2020) 15068–15071.
doi: 10.1039/d0cc06302a
X. Bai, Y.Y. Du, X.Y. Hu, et al., Appl. Catal. B-Environ. 132 (2018) 204–213.
E. Yang, A.B. Alayande, C.M. Kim, J.H. Song, I.S. Kim, Desalination. 426 (2018) 21–31.
doi: 10.1016/j.desal.2017.10.023
E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, B. Bruggen, F. Parvizian, J. Ind. Eng. Chem. 62 (2018) 311–320.
doi: 10.1016/j.jiec.2018.01.009
J. Hou, Y. Chen, W. Shi, C. Bao, X. Hu, Appl. Surf. Sci. 505 (2020) 144145.
doi: 10.1016/j.apsusc.2019.144145
Y.C. Liu, Z.X. Yu, Y.X. Peng, et al., Chem. Phys. Lett. 749 (2020) 137424.
doi: 10.1016/j.cplett.2020.137424
S.G. Kim, D.H. Hyeon, J.H. Chun, B.H. Chun, S.H. Kim, Desalin. Water Treat. 51 (2013) 6338–6345.
doi: 10.1080/19443994.2013.780994
S. Kim, X. Lin, R. Ou, H. Liu, X. Zhang, G.P. Simon, C.D. Easton, H. Wang, J. Mater. Chem. A 5 (2017) 1533–1540.
doi: 10.1039/C6TA07350F
M.E.A. Ali, L.Y. Wang, X.Y. Wang, et al., Desalination 386 (2016) 67–76.
doi: 10.1016/j.desal.2016.02.034
X. Chen, Z. Feng, J. Gohil, et al., ACS Appl. Mater. Interfaces 12 (2020) 1387–1394.
doi: 10.1021/acsami.9b19255
H. Zhang, X. Quan, S. Chen, X., Fan, G., Wei, Environ. Sci. Technol. 52 (2018) 4827–4834.
doi: 10.1021/acs.est.8b00515
Y. Li, W. Zhao, M. Weyland, et al., Environ. Sci. Technol. 53 (2019) 8314–8323.
doi: 10.1021/acs.est.9b01914
F. Baskoro, C.B. Wong, S.R. Kumar, et al., J. Membr. Sci. 554 (2018) 253–263.
doi: 10.1016/j.memsci.2018.03.006
H. Yu, G.Q. Xiao, Y. He, et al., Desalination 500 (2021) 114868.
doi: 10.1016/j.desal.2020.114868
I. Chandio, F.A. Janjhi, A.A. Memon, et al., Desalination 500 (2021) 114848.
doi: 10.1016/j.desal.2020.114848
X.Y. Chen, Z.H. Feng, J. Gohil, et al., ACS Appl. Mater. Interfaces 12 (2020) 1387–1394.
doi: 10.1021/acsami.9b19255
E. Halakoo, X. Feng, Sep. Purif. Technol. 234 (2020) 116077.
doi: 10.1016/j.seppur.2019.116077
X.B. Hu, Y. Yu, N. Lin, et al., Water Sci. Technol.-Water Supply 18 (2018) 2162–2169.
doi: 10.2166/ws.2018.037
F.U. Nigiz, Desalination 485 (2020) 114465.
doi: 10.1016/j.desal.2020.114465
A. Abdel-Karim, J.M. Luque-Alled, S. Leaper, et al., Desalination 452 (2019) 196–207.
doi: 10.1016/j.desal.2018.11.014
R.K. Joshi, P. Carbone, F.C. Wang, et al., Science 343 (2014) 752–754.
doi: 10.1126/science.1245711
V. Saraswat, R.M. Jacobberger, J.S. Ostrander, et al., ACS Nano 12 (2018) 7855–7865.
doi: 10.1021/acsnano.8b02015
F. Perreault, A.F. de Faria, M. Elimelech, Chem. Soc. Rev. 44 (2015) 5861–5896.
doi: 10.1039/C5CS00021A
S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, et al., Nat. Nanotechnol. 10 (2015) 459–464.
doi: 10.1038/nnano.2015.37
J. Cheng, Y. Zhang, G. Zhang, et al., Appl. Surf. Sci. 357 (2015) 1975–1981.
doi: 10.1016/j.apsusc.2015.09.162
J.Y. Liu, H.B. Cai, X.X. Yu, et al., J. Phys. Chem. C 116 (2012) 15741–15746.
doi: 10.1021/jp303265d
C.A. Merchant, K. Healy, M. Wanunu, et al., Nano Lett. 10 (2010) 2915–2921.
doi: 10.1021/nl101046t
S.C. O'Hern, M.S.H. Boutilier, J.C. Idrobo, et al., Nano Lett. 14 (2014) 1234–1241.
doi: 10.1021/nl404118f
Z.Y. Han, L.J. Huang, H.J. Qu, et al., J. Mater. Sci. 56 (2021) 9545–9574.
doi: 10.1007/s10853-021-05873-7
H.B. Huang, Z.G. Song, N. Wei, et al., Nat. Commun. 4 (2013) 2979.
doi: 10.1038/ncomms3979
Y. Han, Z. Xu, C. Gao, Adv. Funct. Mater. 23 (2013) 3693–3700.
doi: 10.1002/adfm.201202601
W.S. Hung, C.H. Tsou, M. De Guzman, et al., Chem. Mat. 26 (2014) 2983–2990.
doi: 10.1021/cm5007873
K.H. Thebo, X.T. Qian, Q. Zhang, et al., Nat. Commun. 9 (2018) 1486.
doi: 10.1038/s41467-018-03919-0
K. Goh, W. Jiang, H.E. Karahan, et al., Adv. Funct. Mater. 25 (2015) 7348–7359.
doi: 10.1002/adfm.201502955
M. Hu, B. Mi, Environ. Sci. Technol. 47 (2013) 3715–3723.
doi: 10.1021/es400571g
D. Cohen-Tanugi, J.C. Grossman, Nano Lett. 12 (2012) 3602–3608.
doi: 10.1021/nl3012853
T. Yang, H. Lin, K.P. Loh, B. Jia, Chem. Mat. 31 (2019) 1829–1846.
doi: 10.1021/acs.chemmater.8b03820
L. Huang, M. Zhang, C. Li, G.Q. Shi, J. Phys. Chem. Lett. 6 (2015) 2806–2815.
doi: 10.1021/acs.jpclett.5b00914
A.K. Giri, F. Teixeira, M.N.D.S. Cordeiro, Desalination 460 (2019) 1–14.
doi: 10.1016/j.desal.2019.02.014
X. Li, B. Zhu, J. Zhu, Carbon N Y 146 (2019) 320–328.
doi: 10.1016/j.carbon.2019.02.007
X. Li, W. Xu, M. Tang, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 13953–13958.
doi: 10.1073/pnas.1613031113
Z.Z. Xu, X.Q. Yan, Z.P. Du, J.F. Li, F.Q. Cheng, Sep. Purif. Technol. 251 (2020) 117304.
doi: 10.1016/j.seppur.2020.117304
G.N. He, D.S. Mallapragada, A. Bose, C.F. Heuberger, E. Gencer, IEEE Trans. Sustain. Energy 12 (2021) 1730–1740.
doi: 10.1109/tste.2021.3064015
S. Dutta, J. Ind. Eng. Chem. 20 (2014) 1148–1156.
doi: 10.1016/j.jiec.2013.07.037
L.P. Zhang, M. Jaroniec, Chem. Soc. Rev. 49 (2020) 6039–6055.
doi: 10.1039/d0cs00185f
Y.D. Cheng, Y.C. Pu, D. Zhao, Chem. Asian J. 15 (2020) 2241–2270.
doi: 10.1002/asia.202000013
D.I. Petukhov, O.O. Kapitanova, E.A. Eremina, E.A. Goodilin, Mendeleev Commun. 31 (2021) 137–148.
doi: 10.1016/j.mencom.2021.03.001
K. Fan, J. Li, L. Li, J. Li, Fuller. Nanotub. Carbon Nanostruct. 26 (2018) 30–37.
doi: 10.1080/1536383X.2017.1398738
G. Li, W. Kujawski, R. Valek, S. Koter, Int. J. Greenh. Gas Control 104 (2021) 103195.
doi: 10.1016/j.ijggc.2020.103195
Y.L. Liu, B.H. Sang, H.R. Wang, et al., Chin. Chem. Lett. 31 (2020) 2109–2114.
doi: 10.1016/j.cclet.2019.12.030
S.A. Mohammed, A.M. Nasir, F. Aziz, et al., Sep. Purif. Technol. 223 (2019) 142–153.
doi: 10.1016/j.seppur.2019.04.061
J.M. Luque-Alled, A.W. Ameen, M. Alberto, et al., J. Membr. Sci. 623 (2021) 118902.
doi: 10.1016/j.memsci.2020.118902
A. Jain, M.Z. Ahmad, A. Linkès, et al., Nanomaterials 11 (2021) 668.
doi: 10.3390/nano11030668
A. Azizi, E.A. Feijani, Z. Ghorbani, A. Tavasoli, Int. J. Hydrog. Energy 46 (2021) 2244–2254.
doi: 10.1016/j.ijhydene.2020.10.025
S. Shah, H. Shaikh, S. Farrukh, et al., RSC Adv. 11 (2021) 19647–19655.
doi: 10.1039/d1ra02264d
Y. Wang, L. Li, X. Zhang, et al., J. Membr. Sci. 589 (2019) 117246.
doi: 10.1016/j.memsci.2019.117246
K. Sainath, A. Modi, J. Bellare, J. Membr. Sci. 614 (2020) 118506.
doi: 10.1016/j.memsci.2020.118506
H.L. Ning, Z.Y. Yang, Z.Q. Yin, et al., ACS Appl. Mater. Interfaces 13 (2021) 17781–17790.
doi: 10.1021/acsami.1c00917
C.H. Tsou, Q.F. An, S.C. Lo, et al., J. Membr. Sci. 477 (2015) 93–100.
doi: 10.1016/j.memsci.2014.12.039
H.X. Zheng, L. Zhu, D.L. He, et al., Int. J. Hydrog. Energy 42 (2017) 30653–30660.
doi: 10.1016/j.ijhydene.2017.10.134
L.C. Lin, J.C. Grossman, Nat. Commun. 6 (2015) 8335.
doi: 10.1038/ncomms9335
H.W. Kim, H.W. Yoon, S.M. Yoon, et al., Science 342 (2013) 91–95.
doi: 10.1126/science.1236098
X.X. Jia, N. Yuan, L. Wang, J.F. Yang, J.P. Li, Eur. J. Inorg. Chem. (2018) 1047–1052.
doi: 10.1002/ejic.201701393
Y. Wang, Q.Y. Yang, J.P. Li, J.F. Yang, C.L. Zhong, Phys. Chem. Chem. Phys. 18 (2016) 8352–8358.
doi: 10.1039/C5CP06569K
B.Y. Qi, X.F. He, G.F. Zeng, et al., Nat. Commun. 8 (2017) 825.
doi: 10.1038/s41467-017-00990-x
G.P. Lei, C. Liu, H. Xie, J.F. Liu, Chem. Phys. Lett. 616 (2014) 232–236.
R. Kumar, K. Jayaramulu, T.K. Maji, C.N.R. Rao, Chem. Commun. 49 (2013) 4947–4949.
doi: 10.1039/c3cc00136a
W. Li, S. Samarasinghe, T.H. Bae, J. Ind. Eng. Chem. 67 (2018) 156–163.
doi: 10.1016/j.jiec.2018.06.026
P. Bhol, S. Yadav, A. Altaee, et al., ACS Appl. Nano Mater. 4 (2021) 3274–3293.
doi: 10.1021/acsanm.0c03439
K.K. Ng, C.J. Wu, L.Y. You, et al., Desalin. Water Treat. 50 (2012) 59–66.
doi: 10.1080/19443994.2012.708538
L. Goswami, R.V. Kumar, S.N. Borah, et al., J. Water Process. Eng. 26 (2018) 314–328.
doi: 10.1016/j.jwpe.2018.10.024
C.H. Neoh, Z.Z. Noor, N.S.A. Mutamim, C.K. Lim, Chem. Eng. J. 283 (2016) 582–594.
doi: 10.1016/j.cej.2015.07.060
M.D.F. Hossain, N. Akther, Y.B. Zhou, Chin. Chem. Lett. 31 (2020) 2525–2538.
doi: 10.1016/j.cclet.2020.05.011
L.C. Chen, S. Lei, M.Z. Wang, J. Yang, X.W. Ge, Chin. Chem. Lett. 27 (2016) 511–517.
doi: 10.1016/j.cclet.2016.01.057
N. Song, X. Gao, Z. Ma, et al., Desalination 437 (2018) 59–72.
doi: 10.1016/j.desal.2018.02.024
X. Wang, X. Peng, Y.J. Zhao, et al., Mater. Lett. 255 (2019) 126573.
doi: 10.1016/j.matlet.2019.126573
S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, J. Membr. Sci. 453 (2014) 292–301.
doi: 10.1016/j.memsci.2013.10.070
R.S. Zambare, K.B. Dhopte, A.V. Patwardhan, P.R. Nemade, Desalination 403 (2017) 24–35.
doi: 10.1016/j.desal.2016.02.003
H. Abadikhah, E.N. Kalali, S. Khodi, X. Xu, S. Agathopoulos, ACS Appl. Mater. Interfaces 11 (2019) 23535–23545.
doi: 10.1021/acsami.9b03557
R. Kurapati, M. Vaidyanathan, A.M. Raichur, RSC Adv. 6 (2016) 39852–39860.
doi: 10.1039/C5RA23038A
D. Bu, Y. Zhou, C. Yang et al., Chin. Chem. Lett. 32 (2021) 3509-3513.
doi: 10.1016/j.cclet.2021.03.007
K. Ullah, Y.H. Kim, B.E. Lee, et al., Chin. Chem. Lett. 25 (2014) 941–946.
doi: 10.1016/j.cclet.2014.03.050
M.U. Farid, S. Jeong, D.H. Seo, et al., Nanoscale 10 (2018) 4475–4487.
doi: 10.1039/c8nr00189h
S.B. Liu, T.H. Zeng, M. Hofmann, et al., ACS Nano 5 (2011) 6971–6980.
doi: 10.1021/nn202451x
H.S. Liu, X.Y. Liu, F.B. Zhao, et al., J. Colloid Interface Sci. 562 (2020) 182–192.
doi: 10.3390/met10020182
Y. Shan, P. Lei, D. Zhang, Appl. Surf. Sci. 435 (2018) 832–840.
doi: 10.1016/j.apsusc.2017.11.191
X. Huang, K.L. Marsh, B.T. McVerry, E.M.V. Hoek, R.B. Kaner, ACS Appl. Mater. Interfaces 8 (2016) 14334–14338.
doi: 10.1021/acsami.6b05293
X.F. Chen, Y.B. Zhu, H. Yu, et al., J. Membr. Sci. 621 (2021) 118934.
doi: 10.1016/j.memsci.2020.118934
J. Pang, Z. Kang, R. Wang, et al., Carbon N Y 144 (2019) 321–332.
doi: 10.1016/j.carbon.2018.12.050
Z. Li, X. Zhang, H.X. Tan, et al., Adv. Funct. Mater. 28 (2018) 1805026.
doi: 10.1002/adfm.201805026
N.K. Xu, Z.F. Hao, C.F. Xiao, et al., J. Membr. Sci. 607 (2020) 118180.
doi: 10.1016/j.memsci.2020.118180
N.A. Almeida, P.M. Martins, S. Teixeira, et al., J. Mater. Sci. 51 (2016) 6974–6986.
doi: 10.1007/s10853-016-9986-4
Y. Gao, M. Hu, B. Mi, J. Membr. Sci. 455 (2014) 349–356.
doi: 10.1016/j.memsci.2014.01.011
W.Y. Wang, C.C. Xie, L.Y. Zhu, et al., J. Mater. Chem. A 7 (2019) 172–187.
doi: 10.1039/C8TA07976E
Y. Zhou, G. Zhang, J. Chen, et al., Electrochem. Commun. 22 (2012) 69–72.
doi: 10.1016/j.elecom.2012.05.036
M.C. Potter, Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character 84 (1911) 260–276.
W. Habermann, E.H. Pommer, Appl. Microbiol. Biotechnol. 35 (1991) 128–133.
R.M. Allen, H.P. Bennetto, Appl. Biochem. Biotechnol. 39 (1993) 27–40.
K. Rabaey, G. Lissens, S.D. Siciliano, W. Verstraete, Biotechnol. Lett. 25 (2003) 1531–1535.
doi: 10.1023/A:1025484009367
Y. Li, C. Cheng, S. Bai, et al., Chem. Eng. J. 365 (2019) 317–324.
doi: 10.1016/j.cej.2019.02.048
Y. Li, L. Liu, F. Yang, J. Membr. Sci. 505 (2016) 130–137.
doi: 10.1016/j.memsci.2016.01.038
Y. Zhang, L. Liu, F. Yang, J. Appl. Polym. Sci. 133 (2016) 43597.
Y. Li, J. Sun, L. Liu, F. Yang, Environ.-Sci. Nano 4 (2017) 335–345.
doi: 10.1039/C6EN00454G
H. Dong, X. Liu, T. Xu, et al., Bioresour. Technol. 247 (2018) 684–689.
doi: 10.1016/j.biortech.2017.09.158
W. Xie, T. Li, A. Tiraferri, E. Drioli, B. Liu, ACS Sustain. Chem. Eng. 9 (2021) 50–75.
doi: 10.1021/acssuschemeng.0c07119
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Yiming Fang , Huimin Gao , Kaiting Cheng , Liang Bai , Zhengtong Li , Yadong Zhao , Xingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
Limin Wang , Feiyi Huang , Xinyi Liang , Rajkumar Devasenathipathy , Xiaotian Liu , Qiulan Huang , Zhongyun Yang , Dujuan Huang , Xinglan Peng , Du-Hong Chen , Youjun Fan , Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501
Ying-Mei Zhong , Zi-Jun Xia , Yu-Hang Hu , Li-Peng Zhou , Li-Xuan Cai , Qing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Chu Wu , Zhichao Dong , Jinfang Hou , Jian Peng , Shuangyu Wu , Xiaofang Wang , Xiangwei Kong , Yue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Xiaobo Li , Qunyan Wu , Congzhi Wang , Jianhui Lan , Meng Zhang , Weiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Si-Hua Liu , Jun-Hao Zhou , Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312
Zhefei Hu , Jingwen Liao , Jiawen Zhou , Lulu Zhao , Yanjuan Liu , Yuefei Zhang , Wei Chen , Sheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985