Environmental applications of graphene oxide composite membranes
-
* Corresponding author.
E-mail addresses: bcliu@scu.edu.cn, baicangliu@gmail.com (B. Liu).
Citation:
Yihua Li, Jiao Jiao, Qidong Wu, Qi Song, Wancen Xie, Baicang Liu. Environmental applications of graphene oxide composite membranes[J]. Chinese Chemical Letters,
;2022, 33(12): 5001-5012.
doi:
10.1016/j.cclet.2022.01.034
M. Hu, B.X. Mi, Environ. Sci. Technol. 47 (2013) 3715–3723.
doi: 10.1021/es400571g
F. Perreault, A.F. de Faria, M. Elimelech, Chem. Soc. Rev. 44 (2015) 5861–5896.
doi: 10.1039/C5CS00021A
S. Sharif, K.S. Ahmad, F. Rehman, Z. Bhatti, K.H. Thebo, J. Environ. Chem. Eng. 9 (2021) 105605.
doi: 10.1016/j.jece.2021.105605
P. Wang, M. Wang, F. Liu, et al., Nat. Commun. 9 (2018) 569.
doi: 10.1038/s41467-018-02941-6
N.D. Koromilas, C. Anastasopoulos, E.K. Oikonomou, J.K. Kallitsis, Polymers (Basel) 11 (2019) 59.
doi: 10.3390/polym11010059
M. Bassyouni, M.H. Abdel-Aziz, M.S. Zoromba, S.M.S. Abdel-Hamid, E. Drioli, J. Ind. Eng. Chem. 73 (2019) 19–46.
doi: 10.1016/j.jiec.2019.01.045
A. Spoială, C.I. Ilie, D. Ficai, A. Ficai, E. Andronescu, Materials (Basel) 14 (2021) 2091.
doi: 10.3390/ma14092091
Y. Li, J. Li, R. Bahamonde Soria, A. Volodine, B. Van der Bruggen, J. Membr. Sci. 603 (2020) 118002.
doi: 10.1016/j.memsci.2020.118002
Y. Li, T. Verbiest, I. Vankelecom, J. Membr. Sci. 428 (2013) 63–69.
doi: 10.1016/j.memsci.2012.10.050
F. Fei, L. Cseri, G. Szekely, C.F. Blanford, ACS Appl. Mater. Interfaces 10 (2018) 16140–16147.
doi: 10.1021/acsami.8b03591
M. Farahani, D. Hua, T.S. Chung, J. Membr. Sci. 548 (2018) 319–331.
doi: 10.1016/j.memsci.2017.11.037
R. Wang, C. Xu, J. Sun, L. Gao, C. Lin, J. Mater. Chem. A 1 (2013) 1794–1800.
doi: 10.1039/C2TA00753C
Y. Li, B. Cao, P. Li, Appl. Surf. Sci. 473 (2019) 1038–1048.
doi: 10.1016/j.apsusc.2018.12.245
W.H. Zhang, M.J. Yin, Q. Zhao, et al., Nat. Nanotechnol. 16 (2021) 337–343.
doi: 10.1038/s41565-020-00833-9
H. Li, X.M. Xie, Chin. Chem. Lett. 29 (2018) 161–165.
doi: 10.1016/j.cclet.2017.06.001
N. Zhang, W. Qi, L. Huang, et al., Chin. J. Chem. Eng. 27 (2019) 1348–1360.
doi: 10.1016/j.cjche.2019.01.001
X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41 (2012) 666–686.
doi: 10.1039/C1CS15078B
L.J. Cote, J. Kim, V.C. Tung, et al., Pure Appl. Chem. 83 (2011) 95–110.
R. Casadei, M. Giacinti Baschetti, M.J. Yoo, H.B. Park, L. Giorgini, Membranes 10 (2020) 188.
doi: 10.3390/membranes10080188
C. Wang, M.J. Park, D.H. Seo, et al., Sep. Purif. Technol. 268 (2021) 118657.
doi: 10.1016/j.seppur.2021.118657
W. Zhong, Y. Zhang, L. Zhao, W. Li, Chin. Chem. Lett. 31 (2020) 2651–2656.
doi: 10.1016/j.cclet.2020.03.033
R.G. Xing, Y.N. Li, B.W. Zhang, et al., Chin. Chem. Lett. 28 (2017) 407–411.
doi: 10.1016/j.cclet.2016.10.017
L. Chen, G. Shi, J. Shen, et al., Nature 550 (2017) 380–383.
doi: 10.1038/nature24044
H.M. Hegab, L. Zou, J. Membr. Sci. 484 (2015) 95–106.
doi: 10.1016/j.memsci.2015.03.011
A. Anand, B. Unnikrishnan, J.Y. Mao, H.J. Lin, C.C. Huang, Desalination 429 (2018) 119–133.
doi: 10.1016/j.desal.2017.12.012
M. Zhu, Y. Liu, M. Chen, et al., Chin. Chem. Lett. 31 (2020) 2683–2688.
doi: 10.1016/j.cclet.2020.04.011
R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Science 335 (2012) 442–444.
doi: 10.1126/science.1211694
X. Zhao, Z. Tong, X. Liu, J. Wang, B. Zhang, Ind. Eng. Chem. Res. 59 (2020) 12232–12238.
doi: 10.1021/acs.iecr.0c01417
C. Chi, X. Wang, Y. Peng, et al., Chem. Mat. 28 (2016) 2921–2927.
doi: 10.1021/acs.chemmater.5b04475
M. Asadollahi, D. Bastani, S.A. Musavi, Desalination 420 (2017) 330–383.
doi: 10.1016/j.desal.2017.05.027
R.H. Hailemariam, Y.C. Woo, M.M. Damtie, et al., Adv. Colloid Interface Sci. 276 (2020) 102100.
doi: 10.1016/j.cis.2019.102100
Y.L. Xing, G.R. Xu, Z.H. An, et al., Sep. Purif. Technol. 259 (2021) 118192.
doi: 10.1016/j.seppur.2020.118192
K. Sint, B. Wang, P. Kral, J. Am. Chem. Soc. 130 (2008) 16448–16449.
doi: 10.1021/ja804409f
K. Huang, G. Liu, Y. Lou, et al., Angew. Chem. Int. Edit. 53 (2014) 6929–6932.
doi: 10.1002/anie.201401061
S.G. Kim, D.H. Hyeon, J.H. Chun, B.H. Chun, S.H. Kim, Desalin. Water Treat. 51 (2013) 6338–6345.
doi: 10.1080/19443994.2013.780994
X. Wang, L.J. Zhi, K. Mullen, Nano Lett. 8 (2008) 323–327.
doi: 10.1021/nl072838r
Y.Y. Lou, G.P. Liu, S.N. Liu, J. Shen, W.Q. Jin, Appl. Surf. Sci. 307 (2014) 631–637.
doi: 10.1016/j.apsusc.2014.04.088
H.A. Becerril, J. Mao, Z. Liu, et al., ACS Nano 2 (2008) 463–470.
doi: 10.1021/nn700375n
V.H. Pham, T.V. Cuong, S.H. Hur, et al., Carbon 48 (2010) 1945–1951.
doi: 10.1016/j.carbon.2010.01.062
K. Xu, B. Feng, C. Zhou, A. Huang, Chem. Eng. Sci. 146 (2016) 159–165.
doi: 10.1016/j.ces.2016.03.003
S.O. Badmus, T.A. Oyehan, T.A. Saleh, J. Mol. Liq. 340 (2021) 116991.
doi: 10.1016/j.molliq.2021.116991
F. Dai, R. Yu, R. Yi, et al., Chem. Commun. 56 (2020) 15068–15071.
doi: 10.1039/d0cc06302a
X. Bai, Y.Y. Du, X.Y. Hu, et al., Appl. Catal. B-Environ. 132 (2018) 204–213.
E. Yang, A.B. Alayande, C.M. Kim, J.H. Song, I.S. Kim, Desalination. 426 (2018) 21–31.
doi: 10.1016/j.desal.2017.10.023
E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, B. Bruggen, F. Parvizian, J. Ind. Eng. Chem. 62 (2018) 311–320.
doi: 10.1016/j.jiec.2018.01.009
J. Hou, Y. Chen, W. Shi, C. Bao, X. Hu, Appl. Surf. Sci. 505 (2020) 144145.
doi: 10.1016/j.apsusc.2019.144145
Y.C. Liu, Z.X. Yu, Y.X. Peng, et al., Chem. Phys. Lett. 749 (2020) 137424.
doi: 10.1016/j.cplett.2020.137424
S.G. Kim, D.H. Hyeon, J.H. Chun, B.H. Chun, S.H. Kim, Desalin. Water Treat. 51 (2013) 6338–6345.
doi: 10.1080/19443994.2013.780994
S. Kim, X. Lin, R. Ou, H. Liu, X. Zhang, G.P. Simon, C.D. Easton, H. Wang, J. Mater. Chem. A 5 (2017) 1533–1540.
doi: 10.1039/C6TA07350F
M.E.A. Ali, L.Y. Wang, X.Y. Wang, et al., Desalination 386 (2016) 67–76.
doi: 10.1016/j.desal.2016.02.034
X. Chen, Z. Feng, J. Gohil, et al., ACS Appl. Mater. Interfaces 12 (2020) 1387–1394.
doi: 10.1021/acsami.9b19255
H. Zhang, X. Quan, S. Chen, X., Fan, G., Wei, Environ. Sci. Technol. 52 (2018) 4827–4834.
doi: 10.1021/acs.est.8b00515
Y. Li, W. Zhao, M. Weyland, et al., Environ. Sci. Technol. 53 (2019) 8314–8323.
doi: 10.1021/acs.est.9b01914
F. Baskoro, C.B. Wong, S.R. Kumar, et al., J. Membr. Sci. 554 (2018) 253–263.
doi: 10.1016/j.memsci.2018.03.006
H. Yu, G.Q. Xiao, Y. He, et al., Desalination 500 (2021) 114868.
doi: 10.1016/j.desal.2020.114868
I. Chandio, F.A. Janjhi, A.A. Memon, et al., Desalination 500 (2021) 114848.
doi: 10.1016/j.desal.2020.114848
X.Y. Chen, Z.H. Feng, J. Gohil, et al., ACS Appl. Mater. Interfaces 12 (2020) 1387–1394.
doi: 10.1021/acsami.9b19255
E. Halakoo, X. Feng, Sep. Purif. Technol. 234 (2020) 116077.
doi: 10.1016/j.seppur.2019.116077
X.B. Hu, Y. Yu, N. Lin, et al., Water Sci. Technol.-Water Supply 18 (2018) 2162–2169.
doi: 10.2166/ws.2018.037
F.U. Nigiz, Desalination 485 (2020) 114465.
doi: 10.1016/j.desal.2020.114465
A. Abdel-Karim, J.M. Luque-Alled, S. Leaper, et al., Desalination 452 (2019) 196–207.
doi: 10.1016/j.desal.2018.11.014
R.K. Joshi, P. Carbone, F.C. Wang, et al., Science 343 (2014) 752–754.
doi: 10.1126/science.1245711
V. Saraswat, R.M. Jacobberger, J.S. Ostrander, et al., ACS Nano 12 (2018) 7855–7865.
doi: 10.1021/acsnano.8b02015
F. Perreault, A.F. de Faria, M. Elimelech, Chem. Soc. Rev. 44 (2015) 5861–5896.
doi: 10.1039/C5CS00021A
S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, et al., Nat. Nanotechnol. 10 (2015) 459–464.
doi: 10.1038/nnano.2015.37
J. Cheng, Y. Zhang, G. Zhang, et al., Appl. Surf. Sci. 357 (2015) 1975–1981.
doi: 10.1016/j.apsusc.2015.09.162
J.Y. Liu, H.B. Cai, X.X. Yu, et al., J. Phys. Chem. C 116 (2012) 15741–15746.
doi: 10.1021/jp303265d
C.A. Merchant, K. Healy, M. Wanunu, et al., Nano Lett. 10 (2010) 2915–2921.
doi: 10.1021/nl101046t
S.C. O'Hern, M.S.H. Boutilier, J.C. Idrobo, et al., Nano Lett. 14 (2014) 1234–1241.
doi: 10.1021/nl404118f
Z.Y. Han, L.J. Huang, H.J. Qu, et al., J. Mater. Sci. 56 (2021) 9545–9574.
doi: 10.1007/s10853-021-05873-7
H.B. Huang, Z.G. Song, N. Wei, et al., Nat. Commun. 4 (2013) 2979.
doi: 10.1038/ncomms3979
Y. Han, Z. Xu, C. Gao, Adv. Funct. Mater. 23 (2013) 3693–3700.
doi: 10.1002/adfm.201202601
W.S. Hung, C.H. Tsou, M. De Guzman, et al., Chem. Mat. 26 (2014) 2983–2990.
doi: 10.1021/cm5007873
K.H. Thebo, X.T. Qian, Q. Zhang, et al., Nat. Commun. 9 (2018) 1486.
doi: 10.1038/s41467-018-03919-0
K. Goh, W. Jiang, H.E. Karahan, et al., Adv. Funct. Mater. 25 (2015) 7348–7359.
doi: 10.1002/adfm.201502955
M. Hu, B. Mi, Environ. Sci. Technol. 47 (2013) 3715–3723.
doi: 10.1021/es400571g
D. Cohen-Tanugi, J.C. Grossman, Nano Lett. 12 (2012) 3602–3608.
doi: 10.1021/nl3012853
T. Yang, H. Lin, K.P. Loh, B. Jia, Chem. Mat. 31 (2019) 1829–1846.
doi: 10.1021/acs.chemmater.8b03820
L. Huang, M. Zhang, C. Li, G.Q. Shi, J. Phys. Chem. Lett. 6 (2015) 2806–2815.
doi: 10.1021/acs.jpclett.5b00914
A.K. Giri, F. Teixeira, M.N.D.S. Cordeiro, Desalination 460 (2019) 1–14.
doi: 10.1016/j.desal.2019.02.014
X. Li, B. Zhu, J. Zhu, Carbon N Y 146 (2019) 320–328.
doi: 10.1016/j.carbon.2019.02.007
X. Li, W. Xu, M. Tang, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 13953–13958.
doi: 10.1073/pnas.1613031113
Z.Z. Xu, X.Q. Yan, Z.P. Du, J.F. Li, F.Q. Cheng, Sep. Purif. Technol. 251 (2020) 117304.
doi: 10.1016/j.seppur.2020.117304
G.N. He, D.S. Mallapragada, A. Bose, C.F. Heuberger, E. Gencer, IEEE Trans. Sustain. Energy 12 (2021) 1730–1740.
doi: 10.1109/tste.2021.3064015
S. Dutta, J. Ind. Eng. Chem. 20 (2014) 1148–1156.
doi: 10.1016/j.jiec.2013.07.037
L.P. Zhang, M. Jaroniec, Chem. Soc. Rev. 49 (2020) 6039–6055.
doi: 10.1039/d0cs00185f
Y.D. Cheng, Y.C. Pu, D. Zhao, Chem. Asian J. 15 (2020) 2241–2270.
doi: 10.1002/asia.202000013
D.I. Petukhov, O.O. Kapitanova, E.A. Eremina, E.A. Goodilin, Mendeleev Commun. 31 (2021) 137–148.
doi: 10.1016/j.mencom.2021.03.001
K. Fan, J. Li, L. Li, J. Li, Fuller. Nanotub. Carbon Nanostruct. 26 (2018) 30–37.
doi: 10.1080/1536383X.2017.1398738
G. Li, W. Kujawski, R. Valek, S. Koter, Int. J. Greenh. Gas Control 104 (2021) 103195.
doi: 10.1016/j.ijggc.2020.103195
Y.L. Liu, B.H. Sang, H.R. Wang, et al., Chin. Chem. Lett. 31 (2020) 2109–2114.
doi: 10.1016/j.cclet.2019.12.030
S.A. Mohammed, A.M. Nasir, F. Aziz, et al., Sep. Purif. Technol. 223 (2019) 142–153.
doi: 10.1016/j.seppur.2019.04.061
J.M. Luque-Alled, A.W. Ameen, M. Alberto, et al., J. Membr. Sci. 623 (2021) 118902.
doi: 10.1016/j.memsci.2020.118902
A. Jain, M.Z. Ahmad, A. Linkès, et al., Nanomaterials 11 (2021) 668.
doi: 10.3390/nano11030668
A. Azizi, E.A. Feijani, Z. Ghorbani, A. Tavasoli, Int. J. Hydrog. Energy 46 (2021) 2244–2254.
doi: 10.1016/j.ijhydene.2020.10.025
S. Shah, H. Shaikh, S. Farrukh, et al., RSC Adv. 11 (2021) 19647–19655.
doi: 10.1039/d1ra02264d
Y. Wang, L. Li, X. Zhang, et al., J. Membr. Sci. 589 (2019) 117246.
doi: 10.1016/j.memsci.2019.117246
K. Sainath, A. Modi, J. Bellare, J. Membr. Sci. 614 (2020) 118506.
doi: 10.1016/j.memsci.2020.118506
H.L. Ning, Z.Y. Yang, Z.Q. Yin, et al., ACS Appl. Mater. Interfaces 13 (2021) 17781–17790.
doi: 10.1021/acsami.1c00917
C.H. Tsou, Q.F. An, S.C. Lo, et al., J. Membr. Sci. 477 (2015) 93–100.
doi: 10.1016/j.memsci.2014.12.039
H.X. Zheng, L. Zhu, D.L. He, et al., Int. J. Hydrog. Energy 42 (2017) 30653–30660.
doi: 10.1016/j.ijhydene.2017.10.134
L.C. Lin, J.C. Grossman, Nat. Commun. 6 (2015) 8335.
doi: 10.1038/ncomms9335
H.W. Kim, H.W. Yoon, S.M. Yoon, et al., Science 342 (2013) 91–95.
doi: 10.1126/science.1236098
X.X. Jia, N. Yuan, L. Wang, J.F. Yang, J.P. Li, Eur. J. Inorg. Chem. (2018) 1047–1052.
doi: 10.1002/ejic.201701393
Y. Wang, Q.Y. Yang, J.P. Li, J.F. Yang, C.L. Zhong, Phys. Chem. Chem. Phys. 18 (2016) 8352–8358.
doi: 10.1039/C5CP06569K
B.Y. Qi, X.F. He, G.F. Zeng, et al., Nat. Commun. 8 (2017) 825.
doi: 10.1038/s41467-017-00990-x
G.P. Lei, C. Liu, H. Xie, J.F. Liu, Chem. Phys. Lett. 616 (2014) 232–236.
R. Kumar, K. Jayaramulu, T.K. Maji, C.N.R. Rao, Chem. Commun. 49 (2013) 4947–4949.
doi: 10.1039/c3cc00136a
W. Li, S. Samarasinghe, T.H. Bae, J. Ind. Eng. Chem. 67 (2018) 156–163.
doi: 10.1016/j.jiec.2018.06.026
P. Bhol, S. Yadav, A. Altaee, et al., ACS Appl. Nano Mater. 4 (2021) 3274–3293.
doi: 10.1021/acsanm.0c03439
K.K. Ng, C.J. Wu, L.Y. You, et al., Desalin. Water Treat. 50 (2012) 59–66.
doi: 10.1080/19443994.2012.708538
L. Goswami, R.V. Kumar, S.N. Borah, et al., J. Water Process. Eng. 26 (2018) 314–328.
doi: 10.1016/j.jwpe.2018.10.024
C.H. Neoh, Z.Z. Noor, N.S.A. Mutamim, C.K. Lim, Chem. Eng. J. 283 (2016) 582–594.
doi: 10.1016/j.cej.2015.07.060
M.D.F. Hossain, N. Akther, Y.B. Zhou, Chin. Chem. Lett. 31 (2020) 2525–2538.
doi: 10.1016/j.cclet.2020.05.011
L.C. Chen, S. Lei, M.Z. Wang, J. Yang, X.W. Ge, Chin. Chem. Lett. 27 (2016) 511–517.
doi: 10.1016/j.cclet.2016.01.057
N. Song, X. Gao, Z. Ma, et al., Desalination 437 (2018) 59–72.
doi: 10.1016/j.desal.2018.02.024
X. Wang, X. Peng, Y.J. Zhao, et al., Mater. Lett. 255 (2019) 126573.
doi: 10.1016/j.matlet.2019.126573
S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, J. Membr. Sci. 453 (2014) 292–301.
doi: 10.1016/j.memsci.2013.10.070
R.S. Zambare, K.B. Dhopte, A.V. Patwardhan, P.R. Nemade, Desalination 403 (2017) 24–35.
doi: 10.1016/j.desal.2016.02.003
H. Abadikhah, E.N. Kalali, S. Khodi, X. Xu, S. Agathopoulos, ACS Appl. Mater. Interfaces 11 (2019) 23535–23545.
doi: 10.1021/acsami.9b03557
R. Kurapati, M. Vaidyanathan, A.M. Raichur, RSC Adv. 6 (2016) 39852–39860.
doi: 10.1039/C5RA23038A
D. Bu, Y. Zhou, C. Yang et al., Chin. Chem. Lett. 32 (2021) 3509-3513.
doi: 10.1016/j.cclet.2021.03.007
K. Ullah, Y.H. Kim, B.E. Lee, et al., Chin. Chem. Lett. 25 (2014) 941–946.
doi: 10.1016/j.cclet.2014.03.050
M.U. Farid, S. Jeong, D.H. Seo, et al., Nanoscale 10 (2018) 4475–4487.
doi: 10.1039/c8nr00189h
S.B. Liu, T.H. Zeng, M. Hofmann, et al., ACS Nano 5 (2011) 6971–6980.
doi: 10.1021/nn202451x
H.S. Liu, X.Y. Liu, F.B. Zhao, et al., J. Colloid Interface Sci. 562 (2020) 182–192.
doi: 10.3390/met10020182
Y. Shan, P. Lei, D. Zhang, Appl. Surf. Sci. 435 (2018) 832–840.
doi: 10.1016/j.apsusc.2017.11.191
X. Huang, K.L. Marsh, B.T. McVerry, E.M.V. Hoek, R.B. Kaner, ACS Appl. Mater. Interfaces 8 (2016) 14334–14338.
doi: 10.1021/acsami.6b05293
X.F. Chen, Y.B. Zhu, H. Yu, et al., J. Membr. Sci. 621 (2021) 118934.
doi: 10.1016/j.memsci.2020.118934
J. Pang, Z. Kang, R. Wang, et al., Carbon N Y 144 (2019) 321–332.
doi: 10.1016/j.carbon.2018.12.050
Z. Li, X. Zhang, H.X. Tan, et al., Adv. Funct. Mater. 28 (2018) 1805026.
doi: 10.1002/adfm.201805026
N.K. Xu, Z.F. Hao, C.F. Xiao, et al., J. Membr. Sci. 607 (2020) 118180.
doi: 10.1016/j.memsci.2020.118180
N.A. Almeida, P.M. Martins, S. Teixeira, et al., J. Mater. Sci. 51 (2016) 6974–6986.
doi: 10.1007/s10853-016-9986-4
Y. Gao, M. Hu, B. Mi, J. Membr. Sci. 455 (2014) 349–356.
doi: 10.1016/j.memsci.2014.01.011
W.Y. Wang, C.C. Xie, L.Y. Zhu, et al., J. Mater. Chem. A 7 (2019) 172–187.
doi: 10.1039/C8TA07976E
Y. Zhou, G. Zhang, J. Chen, et al., Electrochem. Commun. 22 (2012) 69–72.
doi: 10.1016/j.elecom.2012.05.036
M.C. Potter, Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character 84 (1911) 260–276.
W. Habermann, E.H. Pommer, Appl. Microbiol. Biotechnol. 35 (1991) 128–133.
R.M. Allen, H.P. Bennetto, Appl. Biochem. Biotechnol. 39 (1993) 27–40.
K. Rabaey, G. Lissens, S.D. Siciliano, W. Verstraete, Biotechnol. Lett. 25 (2003) 1531–1535.
doi: 10.1023/A:1025484009367
Y. Li, C. Cheng, S. Bai, et al., Chem. Eng. J. 365 (2019) 317–324.
doi: 10.1016/j.cej.2019.02.048
Y. Li, L. Liu, F. Yang, J. Membr. Sci. 505 (2016) 130–137.
doi: 10.1016/j.memsci.2016.01.038
Y. Zhang, L. Liu, F. Yang, J. Appl. Polym. Sci. 133 (2016) 43597.
Y. Li, J. Sun, L. Liu, F. Yang, Environ.-Sci. Nano 4 (2017) 335–345.
doi: 10.1039/C6EN00454G
H. Dong, X. Liu, T. Xu, et al., Bioresour. Technol. 247 (2018) 684–689.
doi: 10.1016/j.biortech.2017.09.158
W. Xie, T. Li, A. Tiraferri, E. Drioli, B. Liu, ACS Sustain. Chem. Eng. 9 (2021) 50–75.
doi: 10.1021/acssuschemeng.0c07119
Mohammad Reza Pourjavid , Ali Akbari Sehat , Majid Haji Hosseini , Mohammad Rezaee , Masoud Arabieh , Seyed Reza Yousefi , Mohammad Reza Jamali . Use of 2-(tert-butoxy)-N-(3-carbamothioylphenyl)acetamide and graphene oxide for separation and preconcentration of Fe(Ⅲ), Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) ions in different samples. Chinese Chemical Letters, 2014, 25(05): 791-793. doi: 10.1016/j.cclet.2014.01.045
Zhi Hui Zhou , Jian Hua Yang , Li Feng Chang , Yan Zhang , Wei Guo Sun , Jin Qu Wang . Novel preparation of NaA/carbon nanocomposite thin films with high permeance for CO2/CH4 separation. Chinese Chemical Letters, 2007, 18(4): 455-457. doi: 10.1016/j.cclet.2007.01.039
Yaqi Hou , Qianxiao Wang , Shuli Wang , Miao Wang , Xuemei Chen , Xu Hou . Hydrophilic carbon nanotube membrane enhanced interfacial evaporation for desalination. Chinese Chemical Letters, 2022, 33(4): 2155-2158. doi: 10.1016/j.cclet.2021.09.007
Wu Zengnan , Xu Ning , Li Weiwei , Lin Jin-Ming . A membrane separation technique for optimizing sample preparation of MALDI-TOF MS detection. Chinese Chemical Letters, 2019, 30(1): 95-98. doi: 10.1016/j.cclet.2018.01.048
Wang Weikang , Wu Yihu , Jiang Zhiwen , Wang Mozhen , Wu Qichao , Zhou Xiao , Ge Xuewu . Self-assembly of graphene oxide nanosheets in t-butanol/water medium under gamma-ray radiation. Chinese Chemical Letters, 2018, 29(6): 931-934. doi: 10.1016/j.cclet.2017.11.003
Zhong Weiming , Zhang Yuyu , Zhao Ling , Li Wanbin . Highly stable and antifouling graphene oxide membranes prepared by bio-inspired modification for water purification. Chinese Chemical Letters, 2020, 31(10): 2651-2656. doi: 10.1016/j.cclet.2020.03.033
Yong Qiang He , Na Na Zhang , Yu Liu , Jian Ping Gao , Mao Cong Yi , Qiao Juan Gong , Hai Xia Qiu . Facile synthesis and excellent catalytic activity of gold nanoparticles on graphene oxide. Chinese Chemical Letters, 2012, 23(1): 41-44. doi: 10.1016/j.cclet.2011.10.005
Yong Qiang He , Na Na Zhang , Xiao Dong Wang . Adsorption of graphene oxide/chitosan porous materials for metal ions. Chinese Chemical Letters, 2011, 22(7): 859-862. doi: 10.1016/j.cclet.2010.12.049
Lotfali Saghatforoush , Mohammad Hasanzadeh , Nasrin Shadjou . Polystyrene-graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine. Chinese Chemical Letters, 2014, 25(4): 655-658. doi: 10.1016/j.cclet.2014.01.014
Wen-Ge Ma , Su-Qin Lu , De-Bin Zhu , Xiao-Bo Xing , Bi-Hua Su . Isothermal detection of RNA transcription levels using graphene oxide-based SYBR Green I fluorescence platform. Chinese Chemical Letters, 2014, 25(3): 482-484. doi: 10.1016/j.cclet.2013.12.013
Xian-He Huang , Meng-Meng Zhang , Xin-Wei Dou , Xuan Lu , Yu-Jun Qin , Pu Zhang , Jia-Hua Shi , Zhi-Xin Guo . Strengthened graphene oxide/diazoresin multilayer composites from layer-by-layer assembly and cross-linking. Chinese Chemical Letters, 2015, 26(9): 1155-1157. doi: 10.1016/j.cclet.2015.04.005
Maryam Mirabedini , Elaheh Motamedi , Mohammad Zaman Kassaee . Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines. Chinese Chemical Letters, 2015, 26(9): 1085-1090. doi: 10.1016/j.cclet.2015.05.021
Le-Chen Chen , Shan Lei , Mo-Zhen Wang , Jun Yang , Xue-Wu Ge . Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chinese Chemical Letters, 2016, 27(4): 511-517.
PARK ChongYeon , GHOSH Trisha , MENG ZeDa , KEFAYAT Ullah , VIKRAM Nikam , OH WonChun . Preparation of CuS-graphene oxide/TiO2 composites designed for high photonic effect and photocatalytic activity under visible light. Chinese Journal of Catalysis, 2013, 34(4): 711-717. doi: 10.1016/S1872-2067(11)60502-0
Zi-Lan Feng , Yuan-Yuan Yao , Jing-Kun Xu , Long Zhang , Zi-Fei Wang , Yang-Ping Wen . One-step co-electrodeposition of graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) film and its electrochemical studies of indole-3-acetic acid. Chinese Chemical Letters, 2014, 25(4): 511-516. doi: 10.1016/j.cclet.2014.01.004
Cao Jing , Zhao Xiaoli , Wang Jiahe , Dou Huanglin , Liu Congcong , Yan Xiaojun , Yan Yuantao , Guo Min , Zhao Wanyu , Yang Xiaowei . Processing micrometer-sized particles in crumpled graphene network for freestanding membrane enabled by freeze casting. Chinese Chemical Letters, 2020, 31(1): 265-268. doi: 10.1016/j.cclet.2019.03.041
He Yinghui , Liu Yingjun , Guo Fan , Pang Kai , Fang Bo , Wang Ya , Chang Dan , Xu Zhen , Gao Chao . Dynamic dispersion stability of graphene oxide with metal ions. Chinese Chemical Letters, 2020, 31(6): 1625-1629. doi: 10.1016/j.cclet.2019.10.010
Fan Gao , Shouren Zhang , Qiyan Lv , Bing Yu . Recent advances in graphene oxide catalyzed organic transformations. Chinese Chemical Letters, 2022, 33(5): 2354-2362. doi: 10.1016/j.cclet.2021.10.081