Citation: Dan Zhang, Le Li, Weizhuo Zhang, Minghui Cao, Hengwei Qiu, Xiaohui Ji. Research progress on electrolytes for fast-charging lithium-ion batteries[J]. Chinese Chemical Letters, ;2023, 34(1): 107122. doi: 10.1016/j.cclet.2022.01.015 shu

Research progress on electrolytes for fast-charging lithium-ion batteries

    * Corresponding authors.
    E-mail addresses: hslile@163.com (L. Li), jixiaohui@snut.edu.cn (X. Ji).
  • Received Date: 30 November 2021
    Revised Date: 30 December 2021
    Accepted Date: 6 January 2022
    Available Online: 14 January 2022

Figures(5)

  • Fast-charging is considered to be a key factor in the successful expansion and use of electric vehicles. Current lithium-ion batteries (LIBs) exhibit high energy density, enabling them to be used in electric vehicles (EVs) over long distances, but they take too long to charge. In addition to modifying the electrode and battery structure, the composition of the electrolyte also affects the fast-charging capability of LIBs. This review provides a comprehensive and in-depth overview of the research progress, basic mechanism, scientific challenges and design strategies of the new fast-charging solution system, focusing on the influences that the compositions of liquid and solid electrolytes have on the fast-charging performance of LIBs. Finally, new insights, promising directions and potential solutions for the electrolytes of fast-charging systems are proposed to stimulate further research on revolutionary next-generation fast-charging LIB chemistry.
  • 加载中
    1. [1]

      A. Mallarapu, V.S. Bharadwaj, S. Santhanagopalan, et al., J. Mater. Chem. A 9 (2021) 4858-4896.  doi: 10.1039/d0ta10166d

    2. [2]

      L. Li, D. Zhang, J. Deng, et al., Carbon 183 (2021) 721-734.

    3. [3]

      S. Ahmed, I. Bloom, A.N. Jansen, et al., J. Power Sources 367 (2017) 250-262.

    4. [4]

      M. Keyser, A. Pesaran, Q. Li, et al., J. Power Sources 367 (2017) 228-236.

    5. [5]

      A. Meintz, J. Zhang, R. Vijayagopal, et al., J. Power Sources 367 (2017) 216-227.

    6. [6]

      A. Burnham, E.J. Dufek, T. Stephens, et al., J. Power Sources 367 (2017) 237-249.

    7. [7]

      Y. Zeng, D. Chalise, S.D. Lubner, et al., Energy Storage Mater. 41 (2021) 264-288.

    8. [8]

      W. Cai, Y.X. Yao, G.L. Zhu, et al., Chem. Soc. Rev. 49 (2020) 3806-3833.  doi: 10.1039/c9cs00728h

    9. [9]

      M. Weiss, R. Ruess, J. Kasnatscheew, et al., Adv. Energy Mater. 11 (2021) 2101126.  doi: 10.1002/aenm.202101126

    10. [10]

      E.R. Logan, J.R. Dahn, Trends. Chem. 2 (2020) 354-366.

    11. [11]

      A.M. Colclasure, A.R. Dunlop, S.E. Trask, et al., J. Electrochem. Soc. 166 (2019) A1412-A1424.  doi: 10.1149/2.0451908jes

    12. [12]

      A. Tomaszewska, Z. Chu, X. Feng, et al., eTransportation 1 (2019) 100011.

    13. [13]

      Y. Liu, Y. Zhu, Y. Cui, et al., Nat. Energy 4 (2019) 540-550.  doi: 10.1038/s41560-019-0405-3

    14. [14]

      H. Zhao, L. Wang, Z. Chen, et al., Energies 12 (2019) 3897.  doi: 10.3390/en12203897

    15. [15]

      S.S. Zhang, ChemElectroChem 7 (2020) 3569-3577.  doi: 10.1002/celc.202000650

    16. [16]

      Z. Zhang, P. Zhu, C. Li, et al., Chin. Chem. Lett. 32 (2021) 154-157.  doi: 10.3390/app12010154

    17. [17]

      Y.X. Yao, X. Chen, C. Yan, et al., Angew. Chem. Int. Ed. 60 (2021) 4090-4097.  doi: 10.1002/anie.202011482

    18. [18]

      J. Chen, Y. Peng, Y. Yin, et al., Angew. Chem. Int. Ed. 60 (2021) 23858-23862.  doi: 10.1002/anie.202110501

    19. [19]

      C. Yan, Y.X. Yao, W.L. Cai, et al., J. Energy Chem. 49 (2020) 335-338.

    20. [20]

      S.S. Zhang, Energy Storage Mater. 24 (2020) 247-254.

    21. [21]

      W. Xiao, H. Xu, M. Xuan, et al., J. Energy Chem. 53 (2021) 147-154.

    22. [22]

      Y. Kang, X. Guo, Z. Guo, et al., J. Energy Chem. 62 (2021) 538-545.

    23. [23]

      J. Huang, J. Liu, J. He, et al., Angew. Chem. Int. Ed. 60 (2021) 20717-20722.  doi: 10.1002/anie.202107957

    24. [24]

      S.S. Zhang, ChemElectroChem 7 (2020) 555-560.  doi: 10.1002/celc.201902050

    25. [25]

      S.S. Zhang, InfoMat 3 (2021) 125-130.  doi: 10.1002/inf2.12159

    26. [26]

      X. Yang, G. Zhang, S. Ge, et al., P. Natl. Acad. Sci. U.S.A. 115 (2018) 7266-7271.  doi: 10.1073/pnas.1807115115

    27. [27]

      K.G. Gallagher, S.E. Trask, C. Bauer, et al., J. Electrochem. Soc. 163 (2016) 138-149.

    28. [28]

      P. Arora, M. Doyle, R.E. White, et al., J. Electrochem. Soc. 146 (1999) 3543.

    29. [29]

      G.L. Zhu, C.Z. Zhao, J.Q. Huang, et al., Small 15 (2019) 1805389.  doi: 10.1002/smll.201805389

    30. [30]

      W. Xie, X. Liu, R. He, et al., J. Energy Storage 32 (2020) 101837.

    31. [31]

      R. Yuge, N. Tamura, T. Manako, et al., J. Power Sources 266 (2014) 471-474.

    32. [32]

      W. Zhao, F. Ren, Q. Yan, et al., Chin. Chem. Lett. 31 (2020) 4-7.

    33. [33]

      J. Shi, N. Ehteshami, J. Ma, et al., J. Power Sources 429 (2019) 67-74.

    34. [34]

      M. Winter, B. Barnett, K. Xu, et al., Chem. Rev. 118 (2018) 11433-11456.  doi: 10.1021/acs.chemrev.8b00422

    35. [35]

      J.Y. Luo, W.J. Cui, P. He, et al., Nat. Chem. 2 (2010) 760.  doi: 10.1038/nchem.763

    36. [36]

      Z. Du, D.L.W. Ⅲ, I. Belharouak, et al., Electrochem. Commun. 103 (2019) 109-113.

    37. [37]

      X. Zhang, L. Zou, Y. Xu, et al., Adv. Energy Mater. 10 (2020) 2000368.  doi: 10.1002/aenm.202000368

    38. [38]

      L.L. Jiang, C. Yan, Y.X. Yao, et al., Angew. Chem. Int. Ed. 60 (2021) 3402-3406.  doi: 10.1002/anie.202009738

    39. [39]

      Z. Wang, Y. Xu, J. Peng, et al., Small 17 (2021) 2101650.  doi: 10.1002/smll.202101650

    40. [40]

      Y. Zou, Z. Cao, J. Zhang, et al., Adv. Mater. 33 (2021) 2102964.  doi: 10.1002/adma.202102964

    41. [41]

      Y. Yu, P. Karayaylali, Y. Katayama, et al., J. Phys. Chem. C 122 (2018) 27368-27382.  doi: 10.1021/acs.jpcc.8b07848

    42. [42]

      K. Xu, Chem. Rev. 114 (2014) 11503-11618.  doi: 10.1021/cr500003w

    43. [43]

      H.B. Son, M.Y. Jeong, J.G. Han, et al., J. Power Sources 400 (2018) 147-156.

    44. [44]

      J.G. Han, M.Y. Jeong, K. Kim, et al., J. Power Sources 446 (2020) 227366.

    45. [45]

      M. Hekmatfar, I. Hasa, R. Eghbal, et al., Adv. Mater. Interfaces 7 (2020) 1901500.  doi: 10.1002/admi.201901500

    46. [46]

      W. Zhao, F. Ren, Q. Yan, et al., Chin. Chem. Lett. 31 (2020) 3209-3212.

    47. [47]

      F. Cheng, X. Zhang, Y. Qiu, et al., Nano Energy 88 (2021) 106301.

    48. [48]

      J. Wen, Y. Yu, C. Chen, et al., Mater. Express 2 (2021) 197-212.

    49. [49]

      G.H. Wrodnigg, J.O. Besenhard, M. Winter, et al., J. Electrochem. Soc. 146 (1999) 470-472.

    50. [50]

      N. Chawla, N. Bharti, S. Singh, et al., Batteries 5 (2019) 19.  doi: 10.3390/batteries5010019

    51. [51]

      I. Cekic-Laskovic, N. von Aspern, L. Imholt, et al., Top. Curr. Chem. 375 (2017) 37.

    52. [52]

      L. Xue, S.Y. Lee, Z. Zhao, et al., J. Power Sources 295 (2015) 190-196.

    53. [53]

      A. Lewandowski, B. Kurc, I. Stepniak, et al., Electrochim. Acta 56 (2011) 5972-5978.

    54. [54]

      M. Safa, A. Chamaani, N. Chawla, et al., Electrochim. Acta 213 (2016) 587-593.

    55. [55]

      M. Safa, E. Adelowo, A. Chamaani, et al., ChemElectroChem 6 (2019) 3319-3332.  doi: 10.1002/celc.201900504

    56. [56]

      P. Hilbig, L. Ibing, R. Wagner, et al., Energies 10 (2017) 1312.  doi: 10.3390/en10091312

    57. [57]

      Y. Yamada, K. Furukawa, K. Sodeyama, et al., J. Am. Chem. Soc. 136 (2014) 5039-5046.  doi: 10.1021/ja412807w

    58. [58]

      P. Isken, C. Dippel, R. Schmitz, et al., Electrochim. Acta 56 (2011) 7530-7535.

    59. [59]

      R.W. Schmitz, P. Murmann, R. Schmitz, et al., Prog. Solid State Chem. 42 (2014) 65-84.

    60. [60]

      S. Brox, S. Röser, B. Streipert, et al., ChemElectroChem 4 (2017) 304-309.  doi: 10.1002/celc.201600610

    61. [61]

      S. Brox, S. Röser, T. Husch, et al., ChemSusChem 9 (2016) 1704-1711.  doi: 10.1002/cssc.201600369

    62. [62]

      B. Pohl, M. Grünebaum, M. Drews, et al., Electrochim. Acta 180 (2015) 795-800.

    63. [63]

      A.N. Kirshnamoorthy, K. Oldiges, M. Winter, et al., Phys. Chem. Chem. Phys. 20 (2018) 25701-25715.

    64. [64]

      K. Oldiges, N. von Aspern, I. Cekic-Laskovic, et al., J. Electrochem. Soc. 165 (2018) A3773-A3781.  doi: 10.1149/2.0461816jes

    65. [65]

      P. Hilbig, L. Ibing, M. Winter et al., Energies 12 (2019) 2869.  doi: 10.3390/en12152869

    66. [66]

      B.S. Vishnugopi, E. Kazyak, J.A. Lewis, et al., ACS Energy Lett. 6 (2021) 3734-3749.  doi: 10.1021/acsenergylett.1c01352

    67. [67]

      Y.Y. Lee, Y.L. Liu, Electrochim. Acta 258 (2017) 1329-1335.

    68. [68]

      X. Liu, Y. Ren, L. Zhang, et al., Front. Chem. 7 (2019) 421.

  • 加载中
    1. [1]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    2. [2]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    3. [3]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    4. [4]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    5. [5]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    6. [6]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    7. [7]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    8. [8]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    9. [9]

      Xiangkang JiangZhixing WangHong DongXiang ZhangJin HuManman ChuYanshuai HongLei XuWenjie PengXiqian YuJiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553

    10. [10]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    11. [11]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    12. [12]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    13. [13]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    14. [14]

      Haining PengHuijun LiuChengzong LiYingfu LiQizhi ChenTao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556

    15. [15]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    16. [16]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    17. [17]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    18. [18]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    19. [19]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    20. [20]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

Metrics
  • PDF Downloads(53)
  • Abstract views(999)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return