Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction
-
* Corresponding author.
E-mail address: iamzmluo@njupt.edu.cn (Z. Luo).
Citation:
Zhongshui Li, Yang Yue, Junchen Peng, Zhimin Luo. Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction[J]. Chinese Chemical Letters,
;2023, 34(1): 107119.
doi:
10.1016/j.cclet.2022.01.012
N. Cheng, S. Stambula, D. Wang, et al., Nat. Commun. 7 (2016) 13638.
doi: 10.1038/ncomms13638
D. Zhang, H. Mou, F. Lu, C. Song, D. WAng, Appl. Catal. B 254 (2019) 471–478.
doi: 10.1016/j.apcatb.2019.05.029
D.W. Boukhvalov, Y.W. Son, R.S. Ruoff, ACS Catal. 4 (2014) 2016–2021.
doi: 10.1021/cs5002288
X. Zou, Z. Li, Y. Xie, H. Wu, S. Lin, Int. J. Hydrogen Energy 45 (2020) 30647–30658.
doi: 10.1016/j.ijhydene.2020.09.165
Z. Li, X. Huang, X. Zhang, L. Zhang, S. Lin, J. Mater. Chem. 22 (2012) 23602–23607.
doi: 10.1039/c2jm35239g
Z. Li, L. Zhang, X. Huang, L. Ye, S. Lin, Electrochim. Acta 121 (2014) 215–222.
doi: 10.1016/j.electacta.2013.12.174
Z. Li, S. Lin, Z. Chen, Y. Shi, X. Huang, J. Colloid Interface Sci. 368 (2012) 413–419.
doi: 10.1016/j.jcis.2011.10.080
S. Ye, F. Luo, Q. Zhang, et al., Energy Environ. Sci. 12 (2019) 1000–1007.
doi: 10.1039/c8ee02888e
Z. Gao, M. Li, J. Wang, et al., Carbon 139 (2018) 369–377.
doi: 10.1016/j.carbon.2018.07.006
M.J. Muñoz-Batista, D. Motta Meira, G. Colón, A. Kubacka, M. Fernández-García, Angew. Chem. Int. Ed. 57 (2018) 1199–1203.
doi: 10.1002/anie.201709552
X. Wang, L. Zhuang, Y. Jia, et al., Angew. Chem. Int. Ed. 57 (2018) 16421–16425.
doi: 10.1002/anie.201810199
W. Wu, C. Niu, C. Wei, et al., Angew. Chem. Int. Ed. 58 (2019) 2029–2033.
doi: 10.1002/anie.201812475
P. Wang, X. Zhang, J. Zhang, et al., Nat. Commun. 8 (2017) 14580.
doi: 10.1038/ncomms14580
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 28 (2016) 1917–1933.
doi: 10.1002/adma.201503270
L. Lin, P. Sherrell, Y. Liu, et al., Adv. Energy Mater. 10 (2020) 1903870.
doi: 10.1002/aenm.201903870
L. Najafi, S. Bellani, R. Oropesa-Nuñez, et al., Adv. Energy Mater. 8 (2018) 1703212.
doi: 10.1002/aenm.201703212
C.H. Choi, M. Kim, H.C. Kwon, et al., Nat. Commun. 7 (2016) 10922.
doi: 10.1038/ncomms10922
J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed. 54 (2015) 2100–2104.
doi: 10.1002/anie.201409524
Y.C. Chen, A.Y. Lu, P. Lu, et al., Adv. Mater. 29 (2017) 1703863.
doi: 10.1002/adma.201703863
S. Park, C. Kim, S.O. Park, et al., Adv. Mater. 32 (2020) 2001889.
doi: 10.1002/adma.202001889
S.S. Nishat, M.T. Islam, S. Ahmed, A. Kabir, Mater. Today, Commun. 25 (2020) 101602.
doi: 10.1016/j.mtcomm.2020.101602
Y. Yan, P. Wang, J. Lin, J. Cao, J. Qi, J. Energy Chem. 58 (2021) 446–462.
doi: 10.1016/j.jechem.2020.10.010
Y. Jiao, Y. Zheng, K. Davey, S. Qiao, Nat. Energy 1 (2016) 16130.
doi: 10.1038/nenergy.2016.130
L. Chang, Z. Sun, Y.H. Hu, Electrochem. Energ. Rev. 4 (2021) 194–218.
doi: 10.1007/s41918-020-00087-y
C. Chang, W. Chen, Y. Chen, et al., Acta Phys. Chim. Sin. 37 (2021) 2108017.
doi: 10.3866/pku.whxb202108017
H. Li, X. Zhou, W. Zhai, et al., Adv. Energy Mater. 10 (2020) 2002019.
doi: 10.1002/aenm.202002019
J. Liu, Q. Ma, Z. Huang, G. Liu, H. Zhang, Adv. Mater. 31 (2019) 1800696.
doi: 10.1002/adma.201800696
Y. Chen, Z. Fan, Z. Zhang, et al., Chem. Rev. 118 (2018) 6409–6455.
doi: 10.1021/acs.chemrev.7b00727
C. Tan, X. Cao, X.J. Wu, et al., Chem. Rev. 117 (2017) 6225–6331.
doi: 10.1021/acs.chemrev.6b00558
J. Xu, J. Zhang, W. Zhang, C.S. Lee, Adv. Energy Mater. 7 (2017) 1700571.
doi: 10.1002/aenm.201700571
T.A. Shifa, F. Wang, Y. Liu, J. He, Adv. Mater. 31 (2019) 1804828.
doi: 10.1002/adma.201804828
R. Tong, K.W. Ng, X. Wang, et al., J. Mater. Chem. A 8 (2020) 23202–23230.
doi: 10.1039/d0ta08045d
Z. Liu, X. Zhang, Y. Gong, et al., Nano Res. 12 (2019) 1301–1305.
doi: 10.1007/s12274-018-2212-8
J. Ping, Y. Wang, Q. Lu, et al., Adv. Mater. 28 (2016) 7640.
doi: 10.1002/adma.201601019
M. Zhao, Y. Huang, Y. Peng, et al., Chem. Soc. Rev. 47 (2018) 6267–6295.
doi: 10.1039/C8CS00268A
L. Niu, J.N. Coleman, H. Zhang, et al., Small 12 (2016) 272–293.
doi: 10.1002/smll.201502207
J. Jiang, N. Li, J. Zou, et al., Chem. Soc. Rev. 48 (2019) 4639–4654.
doi: 10.1039/c9cs00348g
G. Zhang, H. Liu, J. Qu, J. Li, Energy Environ. Sci. 9 (2016) 1190–1209.
doi: 10.1039/C5EE03761A
Z. Li, S. Xu, Y. Shi, et al., Chem. Eng. J. 414 (2021) 128814.
doi: 10.1016/j.cej.2021.128814
Z. Li, S. Xu, Y. Xie, Y. Wang, S. Lin, Electrochim. Acta 264 (2018) 53–60.
doi: 10.3847/1538-4357/aade8e
T. Wu, H. Zhang, Angew. Chem. Int. Ed. 54 (2015) 4432–4434.
doi: 10.1002/anie.201411335
Z. Lai, A. Chaturvedi, Z. Shi, et al., Small 17 (2021) 2006866.
doi: 10.1002/smll.202006866
L. Zhao, B. Dong, S. Li, et al., ACS Nano 11 (2017) 5800–5807.
doi: 10.1021/acsnano.7b01409
W. Zhai, T. Xiong, Z. He, et al., Adv. Mater. 33 (2021) 2006661.
doi: 10.1002/adma.202006661
Q. Song, J. Wang, Q. Sun, et al., Chem. Commun. 56 (2020) 10285–10288.
doi: 10.1039/d0cc03773g
H.F. Shen, Z.W. Shao, Q.F. Zhao, et al., J. Colloid Interface Sci. 573 (2020) 115–122.
doi: 10.1016/j.jcis.2020.03.111
K. Sun, Y. Liu, Y. Pan, et al., Nano Res. 11 (2018) 4368–4379.
doi: 10.1007/s12274-018-2026-8
Q. Zhou, G. Zhao, K. Rui, et al., Nanoscale 11 (2019) 717–724.
doi: 10.1039/c8nr08028c
X. Zhang, H. Cheng, H. Zhang, Adv. Mater. 29 (2017) 1701704.
doi: 10.1002/adma.201701704
Z. Fan, M. Bosman, X. Huang, et al., Nat. Commun. 6 (2015) 7684.
doi: 10.1038/ncomms8684
Z. Fan, X. Huang, Y. Han, et al., Nat. Commun. 6 (2015) 6571.
doi: 10.1038/ncomms7571
X. Huang, S. Li, Y. Huang, et al., Nat. Commun. 2 (2011) 292.
doi: 10.1038/ncomms1291
Y. Ge, Z. Shi, C. Tan, et al., Chem 6 (2020) 1237–1253.
doi: 10.1016/j.chempr.2020.04.004
H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Nanoscale 12 (2020) 1247–1268.
doi: 10.1039/c9nr08313h
Y. Chen, Z. Lai, X. Zhang, et al., Nat. Rev. Chem. 4 (2020) 243–256.
doi: 10.1038/s41570-020-0173-4
H. Jin, Q. Gu, B. Chen, et al., Chem 6 (2020) 2382–2394.
doi: 10.1016/j.chempr.2020.06.037
Q. Lu, A. Wang, H. Cheng, et al., Small 14 (2018) 1801090.
doi: 10.1002/smll.201801090
Y. Zheng, P. Wu, M. Gao, et al., Nat. Commun. 9 (2018) 2533.
doi: 10.1038/s41467-018-04954-7
Z. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Adv. Energy Mater. 8 (2018) 1703482.
doi: 10.1002/aenm.201703482
J. Shi, X. Wang, S. Zhang, et al., Nat. Commun. 8 (2017) 958.
doi: 10.1038/s41467-017-01089-z
J. Ping, Z. Fan, M. Sindoro, Y. Ying, H. Zhang, Adv. Funct. Mater. 27 (2017) 1605817.
doi: 10.1002/adfm.201605817
H. Huang, J. Zha, S. Li, C. Tan, Chin. Chem. Lett. 33 (2022) 163–176.
doi: 10.1016/j.cclet.2021.06.004
T. Rao, H. Wang, Y.J. Zeng, et al., Adv. Sci. 8 (2021) 2002284.
doi: 10.1002/advs.202002284
J. Yi, X. She, Y. Song, et al., Chem. Eng. J. 335 (2018) 282–289.
doi: 10.1016/j.cej.2017.10.125
Q. He, Z. Wang, L. Meng, Q. Chen, G. Yong, Chem. J. Chin. Univ. 42 (2021) 523–538.
W. Jia, X. Zhou, Y. Huang, et al., ChemCatChem 11 (2019) 707–714.
X. Zhang, H. Li, H. Yang, et al., ChemElectroChem 7 (2020) 3347–3352.
doi: 10.1002/celc.202000745
X. Zheng, G. Zhang, X. Xu, et al., Appl. Surf. Sci. 496 (2019) 143694.
doi: 10.1016/j.apsusc.2019.143694
L. Zhang, K. Wei, J. Yin, et al., Langmuir 36 (2020) 14342–14351.
doi: 10.1021/acs.langmuir.0c02691
Y. Xu, R. Wang, J. Wang, et al., Chem. Eng. J. 417 (2021) 129233.
doi: 10.1016/j.cej.2021.129233
L. Zhang, K. Wei, J. Ma, et al., Appl. Surf. Sci. 566 (2021) 150754.
doi: 10.1016/j.apsusc.2021.150754
Z. Zhou, X. Wang, H. Zhang, et al., Small 17 (2021) 2007486.
doi: 10.1002/smll.202007486
Y. Li, K.A.N. Duerloo, K. Wauson, E.J. Reed, Nat. Commun. 7 (2016) 10671.
doi: 10.1038/ncomms10671
S.K. Kim, W. Song, S. Ji, et al., Appl. Surf. Sci. 425 (2017) 241–245.
doi: 10.4082/kjfm.2017.38.5.241
D. Han, Z. Luo, Y. Li, et al., Appl. Surf. Sci. 529 (2020) 147117.
doi: 10.1016/j.apsusc.2020.147117
J. Ekspong, E. Gracia Espino, Adv. Theory Simul. 3 (2020) 1900213.
doi: 10.1002/adts.201900213
W. Chen, J. Gu, Y. Du, et al., Adv. Funct. Mater. 30 (2020) 2000551.
doi: 10.1002/adfm.202000551
X. Xu, R. Zhao, W. Ai, et al., Adv. Mater. 30 (2018) 1800658.
doi: 10.1002/adma.201800658
B. Chen, H. Bi, Q. Ma, et al., Sci. China Mater. 60 (2017) 1102–1108.
doi: 10.1007/s40843-017-9150-7
A.G. del Águila, S. Liu, T. Thu Ha Do, et al., ACS Nano 13 (2019) 13006–13014.
doi: 10.1021/acsnano.9b05656
U. Krishnan, M. Kaur, K. Singh, M. Kumar, A. Kumar, Superlattices Microstruct. 128 (2019) 274–297.
doi: 10.1016/j.spmi.2019.02.005
Z. Zhou, B. Li, C. Shen, et al., Small 16 (2020) 2004173.
doi: 10.1002/smll.202004173
M. Deng, M. Li, H.G. Park, ACS Appl. Energy Mater. 1 (2018) 5993–5998.
doi: 10.1021/acsaem.8b01049
H. Mao, Y. Fu, H. Yang, et al., ACS Appl. Mater. Interfaces 12 (2020) 25189–25199.
doi: 10.1021/acsami.0c05204
M.A. Lukowski, A.S. Daniel, F. Meng, et al., J. Am. Chem. Soc. 135 (2013) 10274–10277.
doi: 10.1021/ja404523s
Y. Yu, G.H. Nam, Q. He, et al., Nat. Chem. 10 (2018) 638–643.
doi: 10.1038/s41557-018-0035-6
D. Wang, X. Zhang, S. Bao, et al., J. Mater. Chem. A 5 (2017) 2681–2688.
doi: 10.1039/C6TA09409K
Y. He, P. Tang, Z. Hu, et al., Nat. Commun. 11 (2020) 57.
doi: 10.1038/s41467-019-13631-2
C. Tan, Z. Luo, A. Chaturvedi, et al., Adv. Mater. 30 (2018) 1705509.
doi: 10.1002/adma.201705509
Q. Fu, J. Han, X. Wang, et al., Adv. Mater. 33 (2021) 1907818.
doi: 10.1002/adma.201907818
L. Xie, L. Wang, W. Zhao, et al., Nat. Commun. 12 (2021) 5070.
doi: 10.1038/s41467-021-25381-1
Z. Lai, A. Chaturvedi, Y. Wang, et al., J. Am. Chem. Soc. 140 (2018) 8563–8568.
doi: 10.1021/jacs.8b04513
J. Li, M. Hong, L. Sun, et al., ACS Appl. Mater. Interfaces 10 (2018) 458–467.
doi: 10.1021/acsami.7b13387
G. Shao, X.X. Xue, X. Zhou, et al., ACS Nano 13 (2019) 8265–8274.
doi: 10.1021/acsnano.9b03648
D. Vikraman, S. Hussain, K. Karuppasamy, et al., Appl. Catal. B 264 (2020) 118531.
doi: 10.1016/j.apcatb.2019.118531
Rahul, H. Singh, N.P. Lalla, U. Deshpande, S.K. Arora, Mater. Today Proc. 45 (2021) 4787–4791.
doi: 10.1016/j.matpr.2021.01.247
L. Jia, C. Li, Y. Zhao, et al., Nanoscale 11 (2019) 23318–23329.
doi: 10.1039/c9nr08986a
J. Chen, X.J. Wu, Q. Lu, et al., Small 17 (2021) 2006135.
doi: 10.1002/smll.202006135
Y. Han, H. Li, M. Zhang, et al., Appl. Surf. Sci. 495 (2019) 143606.
doi: 10.1016/j.apsusc.2019.143606
H. Zhou, F. Yu, Y. Huang, et al., Nat. Commun. 7 (2016) 12765.
doi: 10.1038/ncomms12765
Y. Zhang, L. Xue, C. Liang, et al., Appl. Surf. Sci. 561 (2021) 150079.
doi: 10.1016/j.apsusc.2021.150079
J. Kibsgaard, T.F. Jaramillo, Angew. Chem. Int. Ed. 53 (2014) 14433–14437.
doi: 10.1002/anie.201408222
G. Hu, J. Xiang, J. Li, et al., J. Catal. 371 (2019) 126–134.
doi: 10.1016/j.jcat.2019.01.039
D. Mukherjee, P.M. Austeria, S. Sampath, ACS Energy Lett. 1 (2016) 367–372.
doi: 10.1021/acsenergylett.6b00184
X. Zhang, Z. Luo, P. Yu, et al., Nat. Catal. 1 (2018) 460–468.
doi: 10.1038/s41929-018-0072-y
M. Zhu, H. Kou, K. Wang, et al., Mater. Horiz. 7 (2020) 3131–3160.
doi: 10.1039/d0mh00802h
B. Wu, R. Kempt, E. Kovalska, et al., ACS Appl. Nano Mater. 4 (2021) 441–448.
doi: 10.1021/acsanm.0c02775
Z. Yu, J. Peng, Y. Liu, et al., J. Mater. Chem. A 7 (2019) 13928–13934.
doi: 10.1039/c9ta03256h
M. Yao, H. Hu, B. Sun, et al., Small 15 (2019) 1905201.
doi: 10.1002/smll.201905201
Y. Xue, M. Sun, Int. J. Hydrogen Energy 44 (2019) 16378–16386.
doi: 10.1016/j.ijhydene.2019.04.258
D. Rakov, Y. Li, S. Niu, P. Xu, J. Alloys Compd. 769 (2018) 532–538.
doi: 10.1016/j.jallcom.2018.08.041
S. Wang, B. Xiao, S. Shen, et al., Nanoscale 12 (2020) 14459–14464.
doi: 10.1039/d0nr03819a
B. Song, K. Li, Y. Yin, et al., ACS Catal. 7 (2017) 8549–8557.
doi: 10.1021/acscatal.7b02575
C. Tang, D. He, N. Zhang, et al., Energy Environ. Mater. 5 (2022) 899–905.
doi: 10.1002/eem2.12205
D.J. Li, J. Kang, H.J. Lee, et al., Adv. Energy Mater. 8 (2018) 1702806.
doi: 10.1002/aenm.201702806
Y. Li, S. Niu, D. Rakov, et al., Nanoscale 10 (2018) 7291–7297.
doi: 10.1039/C8NR01811A
Q. Liang, L. Zhong, C. Du, et al., Adv. Funct. Mater. 28 (2018) 1805075.
doi: 10.1002/adfm.201805075
C.F. Du, K.N. Dinh, Q.H. Liang, et al., Adv. Energy Mater. 8 (2018) 1801127.
doi: 10.1002/aenm.201801127
S. Lu, J. Liang, H. Long, et al., Acc. Chem. Res. 53 (2020) 2106–2118.
doi: 10.1021/acs.accounts.0c00487
Y. Chen, Z. Fan, J. Wang, et al., J. Am. Chem. Soc. 142 (2020) 12760–12766.
doi: 10.1021/jacs.0c04981
Z. Fan, Z. Luo, Y. Chen, et al., Small 12 (2016) 3908–3913.
doi: 10.1002/smll.201601787
Y. Chen, Z. Fan, Z. Luo, et al., Adv. Mater. 29 (2017) 1701331.
doi: 10.1002/adma.201701331
Z. Fan, M. Bosman, Z. Huang, et al., Nat. Commun. 11 (2020) 3293.
doi: 10.1038/s41467-020-17068-w
Z. Fan, Y. Zhu, X. Huang, et al., Angew. Chem. Int. Ed. 54 (2015) 5672–5676.
doi: 10.1002/anie.201500993
J. Liu, W. Niu, G. Liu, et al., J. Am. Chem. Soc. 143 (2021) 4387–4396.
doi: 10.1021/jacs.1c00612
W. Niu, J. Liu, J. Huang, et al., Nat. Commun. 10 (2019) 2881.
doi: 10.1038/s41467-019-10764-2
C. Tan, H. Zhang, Nat. Commun. 6 (2015) 7873.
doi: 10.1038/ncomms8873
Z. Fan, Z. Luo, X. Huang, et al., J. Am. Chem. Soc. 138 (2016) 1414–1419.
doi: 10.1021/jacs.5b12715
Q. Lu, A.L. Wang, Y. Gong, et al., Nat. Chem. 10 (2018) 456–461.
doi: 10.1038/s41557-018-0012-0
Y. Ge, Z. Huang, C. Ling, et al., J. Am. Chem. Soc. 142 (2020) 18971–18980.
doi: 10.1021/jacs.0c09461
N. Yang, Z. Zhang, B. Chen, et al., Adv. Mater. 29 (2017) 1700769.
doi: 10.1002/adma.201700769
Z. Zhang, Z. Luo, B. Chen, et al., Adv. Mater. 28 (2016) 8712–8717.
doi: 10.1002/adma.201603075
J. Wang, J. Zhang, G. Liu, et al., Nano Res. 13 (2020) 1970–1975.
doi: 10.1007/s12274-020-2849-y
D. Xu, H. Lv, H. Jin, et al., J. Phys. Chem. Lett. 10 (2019) 663–671.
doi: 10.1021/acs.jpclett.8b03861
Z. Cao, Q. Chen, J. Zhang, et al., Nat. Commun. 8 (2017) 15131.
doi: 10.1038/ncomms15131
Chen Gu , Huacao Ji , Keyu Xu , Jianmei Chen , Kang Chen , Junan Pan , Ning Sun , Longlu Wang . The recent progress of transition metal dichalcogenides-based photothermal materials for solar water generation. Chinese Chemical Letters, 2025, 36(8): 110565-. doi: 10.1016/j.cclet.2024.110565
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Yuting Fu , Haoran Wang , Nan Li , Lujiao Mao , Xusheng Wang , Qipeng Li , Jinjie Qian . Pt inclusion effect on Ni-ABDC-derived PtNi-carbon nanomaterials for hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 110890-. doi: 10.1016/j.cclet.2025.110890
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jing Guo , Jianzhong Ma , Junli Liu , Guanjie Huang , Xiaoting Zhou , Francesco Parrino , Riccardo Ceccato , Leonardo Palmisano , Boon-Junn Ng , Lutfi Kurnianditia Putri , Huaxing Li , Rongjie Li , Gang Liu , Yang Wang , Nikolay Kornienko , Shan-Shan Zhu , Zhenwei Zhang , Xiaoming Liu , Nur Atika Nikma Dahlan , Siang-Piao Chai , Jianmin Ma . Two-dimensional nanomaterials for environmental catalysis roadmap towards 2030. Chinese Chemical Letters, 2025, 36(9): 110988-. doi: 10.1016/j.cclet.2025.110988
Mengzhao Liu , Jie Yin , Chengjian Wang , Weiji Wang , Yuan Gao , Mengxia Yan , Ping Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151