An odyssey of lithium metal anode in liquid lithium–sulfur batteries
-
*Corresponding authors.
E-mail addresses: iamyhhan@nwpu.edu.cn (Y. Han), iamlkong@nwpu.edu.cn (L. Kong).
Citation:
Xiao-Zhong Fan, Meng Liu, Ruiqi Zhang, Yuezhou Zhang, Songcan Wang, Haoxiong Nan, Yunhu Han, Long Kong. An odyssey of lithium metal anode in liquid lithium–sulfur batteries[J]. Chinese Chemical Letters,
;2022, 33(10): 4421-4427.
doi:
10.1016/j.cclet.2021.12.064
J.B. Robinson, K. Xi, R.V. Kumar, et al., J. Phys. Energy 3 (2021) 031501.
doi: 10.1088/2515-7655/abdb9a
Y. Chen, T. Wang, H. Tian, et al., Adv. Mater. 33 (2021) 2003666.
doi: 10.1002/adma.202003666
Z. Shi, M. Li, J. Sun, Z. Chen, Adv. Energy Mater. 11 (2021) 2100332.
doi: 10.1002/aenm.202100332
L. Kong, C. Yan, J.Q. Huang, et al., Energy Environ. Mater. 1 (2018) 100-112.
doi: 10.1002/eem2.12012
C. Yang, Appl. Energy 306 (2022) 118116.
doi: 10.1016/j.apenergy.2021.118116
C. Yang, P. Li, J. Yu, L.D. Zhao, L. Kong, Energy 201 (2020) 117718.
doi: 10.1016/j.energy.2020.117718
Y. Song, X. Li, C. He, Chin. Chem. Lett. 32 (2021) 1106-1110.
doi: 10.1016/j.cclet.2020.08.024
S. Jiang, S. Huang, M. Yao, et al., Chin. Chem. Lett. 31 (2020) 2347-2352.
doi: 10.1016/j.cclet.2020.04.014
M. Zhao, Y.Q. Peng, B.Q. Li, X.Q. Zhang, J.Q. Huang, J. Energy Chem. 56 (2021) 203-208.
doi: 10.1016/j.jechem.2020.07.054
L. Kong, Y. Handa, I. Taniguchi, Mater. Res. Bull. 73 (2016) 164-170.
doi: 10.1016/j.materresbull.2015.08.036
H. Yuan, H.J. Peng, B.Q. Li, et al., Adv. Energy Mater. 9 (2019) 1802768.
doi: 10.1002/aenm.201802768
H.J. Peng, J.Q. Huang, X.Y. Liu, et al., J. Am. Chem. Soc. 139 (2017) 8458-8466.
doi: 10.1021/jacs.6b12358
R. Wang, C. Luo, T. Wang, et al., Adv. Mater. 32 (2020) 2000315.
doi: 10.1002/adma.202000315
Z. Fan, C. Zhang, W. Hua, et al., J. Energy Chem. 62 (2021) 590-598.
doi: 10.1016/j.jechem.2021.04.038
C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, InfoMat 2 (2020) 613-638.
doi: 10.1002/inf2.12080
F. Li, L. Wang, G. Qu, et al., Chin. Chem. Lett. (2021), doi: 10.1016/j.cclet.2021.11.046.
doi: 10.1016/j.cclet.2021.11.046
Y.S. Su, A. Manthiram, Chem. Commun. 48 (2012) 8817-8819.
doi: 10.1039/c2cc33945e
S. Yang, R. Xiao, T. Hu, et al., Nano Energy 90 (2021) 106584.
doi: 10.1016/j.nanoen.2021.106584
B. Guan, X. Sun, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 2249-2253.
doi: 10.1016/j.cclet.2020.12.051
Q. Wang, H. Zhao, B. Li, et al., Chin. Chem. Lett. 32 (2021) 1157-1160.
doi: 10.1016/j.cclet.2020.09.022
Z. Wei, Y. Ren, J. Sokolowski, X. Zhu, G. Wu, InfoMat 2 (2020) 483-508.
doi: 10.1002/inf2.12097
H. Ye, D. Lei, L. Shen, et al., Chin. Chem. Lett. 31 (2020) 570-574.
doi: 10.1016/j.cclet.2019.04.047
X. He, Z. Liu, G. Gao, et al., J. Energy Chem. 59 (2021) 1-8.
doi: 10.1016/j.jechem.2020.10.002
F. Wang, L. Li, D. Lei, et al., J. Energy Chem. 43 (2020) 165-172.
doi: 10.1016/j.jechem.2019.08.019
A. Rashid, X. Zhu, G. Wang, et al., J. Energy Chem. 49 (2020) 71-79.
doi: 10.1016/j.jechem.2020.01.031
X. Luo, X. Lu, X. Chen, et al., J. Energy Chem. 50 (2020) 63-72.
doi: 10.1016/j.jechem.2020.02.041
H. Yuan, J.Q. Huang, H.J. Peng, et al., Adv. Energy Mater. 8 (2018) 1802107.
doi: 10.1002/aenm.201802107
L. Kong, C. Tang, H.J. Peng, J.Q. Huang, Q. Zhang, SmartMat 1 (2020) 1-35.
B. Liu, Y. Zhang, Z. Wang, et al., Adv. Mater. 32 (2020) 2003657.
doi: 10.1002/adma.202003657
Y. Liu, M. Yao, L. Zhang, Z. Niu, J. Energy Chem. 38 (2019) 199-206.
doi: 10.1016/j.jechem.2019.03.034
A. Gupta, A. Bhargav, A. Manthiram, Chem. Mater. 33 (2021) 3457-3466.
doi: 10.1021/acs.chemmater.1c00893
L. Kong, J.X. Chen, H.J. Peng, et al., Energy Environ. Sci. 12 (2019) 2976-2982.
doi: 10.1039/C9EE01257E
C. Dillard, A. Singh, V. Kalra, J. Phys. Chem. C 122 (2018) 18195-18203.
doi: 10.1021/acs.jpcc.8b02506
Z. Li, H. Jiang, N.C. Lai, T. Zhao, Y.C. Lu, Chem. Mater. 31 (2019) 10186-10196.
doi: 10.1021/acs.chemmater.9b03885
X.Y. Li, Q. Zhang, J. Energy Chem. 65 (2022) 302-303.
doi: 10.1016/j.jechem.2021.05.039
J. Xie, Y.W. Song, B.Q. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 22150-22155.
doi: 10.1002/anie.202008911
C.X. Zhao, X.Y. Li, M. Zhao, et al., J. Am. Chem. Soc. 143 (2021) 19865-19872.
doi: 10.1021/jacs.1c09107
M. Zhao, X. Chen, X.Y. Li, B.Q. Li, J.Q. Huang, Adv. Mater. 33 (2021) 2007298.
doi: 10.1002/adma.202007298
M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, ACS Cent. Sci. 6 (2020) 1095-1104.
doi: 10.1021/acscentsci.0c00449
C. Yan, X.Q. Zhang, J.Q. Huang, Q. Liu, Q. Zhang, Trends Chem 1 (2019) 693-704.
doi: 10.1016/j.trechm.2019.06.007
W.J. Chen, C.X. Zhao, B.Q. Li, et al., Energy Environ. Mater. 3 (2020) 160-165.
doi: 10.1002/eem2.12073
R. Cao, W. Xu, D. Lv, J. Xiao, J.G. Zhang, Adv. Energy Mater. 5 (2015) 1402273.
doi: 10.1002/aenm.201402273
R. Xu, X. Shen, X.X. Ma, et al., Angew. Chem. Int. Ed. 60 (2021) 4215-4220.
doi: 10.1002/anie.202013271
C.B. Jin, X.Q. Zhang, O.W. Sheng, et al., Angew. Chem. Int. Ed. 60 (2021) 22990-22995.
doi: 10.1002/anie.202110589
M. Barghamadi, A.S. Best, A.I. Bhatt, et al., Energy Environ. Sci. 7 (2014) 3902-3920.
doi: 10.1039/C4EE02192D
S.S. Zhang, J. Power Sources 231 (2013) 153-162.
doi: 10.1016/j.jpowsour.2012.12.102
S. Xiong, K. Xie, Y. Diao, X. Hong, Electrochim. Acta 83 (2012) 78-86.
doi: 10.1016/j.electacta.2012.07.118
S.K. Heiskanen, J. Kim, B.L. Lucht, Joule 3 (2019) 2322-2333.
doi: 10.1016/j.joule.2019.08.018
J.F. Ding, R. Xu, C. Yan, et al., J. Energy Chem. 59 (2020) 306-319.
S. Li, M. Jiang, Y. Xie, et al., Adv. Mater. 30 (2018) 1706375.
doi: 10.1002/adma.201706375
S. Waluś, G. Offer, I. Hunt, et al., Energy Storage Mater. 10 (2018) 233-245.
doi: 10.1016/j.ensm.2017.05.017
J.B. Goodenough, Y. Kim, Chem. Mater. 22 (2010) 587-603.
doi: 10.1021/cm901452z
C. Fang, J. Li, M. Zhang, et al., Nature 572 (2019) 511-515.
doi: 10.1038/s41586-019-1481-z
F. Huang, S. Wang, Y. Jie, et al., J. Energy Chem. 49 (2020) 257-261.
doi: 10.1016/j.jechem.2020.02.039
L. Kong, Q. Jin, J.Q. Huang, et al., Energy Technol. 7 (2019) 1900111.
doi: 10.1002/ente.201900111
R. Zhang, X.B. Cheng, C.Z. Zhao, et al., Adv. Mater. 28 (2016) 2155-2162.
doi: 10.1002/adma.201504117
S. Xin, L. Gu, N.H. Zhao, et al., J. Am. Chem. Soc. 134 (2012) 18510-18513.
doi: 10.1021/ja308170k
L. Kong, L. Yin, F. Xu, et al., J. Energy Chem. 55 (2021) 80-91.
doi: 10.1016/j.jechem.2020.06.054
M. Zhao, B.Q. Li, H.J. Peng, et al., Angew. Chem. Int. Ed. 59 (2020) 12636-12652.
doi: 10.1002/anie.201909339
L. Cheng, L.A. Curtiss, K.R. Zavadil, et al., ACS Energy Lett. 1 (2016) 503-509.
doi: 10.1021/acsenergylett.6b00194
C.W. Lee, Q. Pang, S. Ha, et al., ACS Cent. Sci. 3 (2017) 605-613.
doi: 10.1021/acscentsci.7b00123
Y. Liu, Y. Elias, J. Meng, et al., Joule 5 (2021) 2323-2364.
doi: 10.1016/j.joule.2021.06.009
H. Yang, Y. Qiao, Z. Chang, P. He, H. Zhou, Angew. Chem. Int. Ed. 60 (2021) 17726-17734.
doi: 10.1002/anie.202106788
H. Li, Y. Kuai, J. Yang, et al., J. Energy Chem. 65 (2022) 616-622.
doi: 10.1016/j.jechem.2021.06.036
Z. Yu, J. Zhang, C. Wang, et al., J. Energy Chem. 51 (2020) 154-160.
doi: 10.1016/j.jechem.2020.03.034
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 4 (2019) 269-280.
doi: 10.1038/s41560-019-0336-z
F. Wu, J.T. Lee, N. Nitta, et al., Adv. Mater. 27 (2015) 101-108.
doi: 10.1002/adma.201404194
W. Zeng, M.M.C. Cheng, S.K.Y. Ng, Electrochim. Acta 319 (2019) 511-517.
doi: 10.1016/j.electacta.2019.06.177
S. Duangdangchote, A. Krittayavathananon, N. Phattharasupakun, N. Joraleechanchai, M. Sawangphruk, Chem. Commun. 55 (2019) 13951-13954.
doi: 10.1039/C9CC06504K
X. Liang, Z. Wen, Y. Liu, et al., J. Power Sources 196 (2011) 9839-9843.
doi: 10.1016/j.jpowsour.2011.08.027
X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 27 (2017) 1605989.
doi: 10.1002/adfm.201605989
A. Vizintin, L. Chabanne, E. Tchernychova, et al., J. Power Sources 344 (2017) 208-217.
doi: 10.1016/j.jpowsour.2017.01.112
N. Akhtar, X. Sun, M.Y. Akram, et al., J. Energy Chem. 52 (2021) 310-317.
doi: 10.1016/j.jechem.2020.04.046
Y.Q. Shen, F.L. Zeng, X.Y. Zhou, et al., J. Energy Chem. 48 (2020) 267-276.
doi: 10.1016/j.jechem.2020.01.016
Y. Cai, Q. Jin, K. Zhao, X. Ma, X. Zhang, Chin. Chem. Lett. 33 (2022) 457-461.
doi: 10.1016/j.cclet.2021.05.065
Y.X. Yao, X.Q. Zhang, B.Q. Li, et al., InfoMat 2 (2020) 379-388.
doi: 10.1002/inf2.12046
C. Monroe, J. Newman, J. Electrochem. Soc. 150 (2003) A1377.
doi: 10.1149/1.1606686
F.P. McGrogan, T. Swamy, S.R. Bishop, et al., Adv. Energy Mater. 7 (2017) 1602011.
doi: 10.1002/aenm.201602011
R. Xu, X.Q. Zhang, X.B. Cheng, et al., Adv. Funct. Mater. 28 (2018) 1705838.
doi: 10.1002/adfm.201705838
J. Yi, D. Zhou, Y. Liang, et al., J. Energy Chem. 58 (2021) 17-24.
doi: 10.1016/j.jechem.2020.09.038
D. Kang, M. Xiao, J.P. Lemmon, Batter. Supercaps 4 (2021) 445-455.
doi: 10.1002/batt.202000225
X.B. Cheng, C. Yan, J.Q. Huang, et al., Energy Storage Mater. 6 (2017) 18-25.
doi: 10.1016/j.ensm.2016.09.003
A. Bhargav, J. He, A. Gupta, A. Manthiram, Joule 4 (2020) 285-291.
doi: 10.1016/j.joule.2020.01.001
S. Dörfler, H. Althues, P. Härtel, et al., Joule 4 (2020) 539-554.
doi: 10.1016/j.joule.2020.02.006
L. Shi, S.M. Bak, Z. Shadike, et al., Energy Environ. Sci. 13 (2020) 3620-3632.
doi: 10.1039/D0EE02088E
L. Kong, H.J. Peng, J.Q. Huang, et al., Energy Storage Mater. 8 (2017) 153-160.
doi: 10.1016/j.ensm.2017.05.009
L. Kong, X. Chen, B.Q. Li, et al., Adv. Mater. 30 (2018) 1705219.
doi: 10.1002/adma.201705219
L. Kong, B.Q. Li, H.J. Peng, et al., Adv. Energy Mater. 8 (2018) 1800849.
doi: 10.1002/aenm.201800849
L. Kong, Q. Jin, X.T. Zhang, et al., J. Energy Chem. 39 (2019) 17-22.
doi: 10.1016/j.jechem.2018.12.012
B.Q. Li, L. Kong, C.X. Zhao, et al., InfoMat 1 (2019) 533-541.
doi: 10.1002/inf2.12056
R. Fang, S. Zhao, K. Chen, D.W. Wang, F. Li, J. Phys. Energy 2 (2020) 015003.
doi: 10.1088/2515-7655/ab5997
H. Shi, Y. Dong, F. Zhou, J. Chen, Z.S. Wu, J. Phys. Energy 1 (2018) 015002.
doi: 10.1088/2515-7655/aadef6
L. Luo, J. Li, H. Yaghoobnejad Asl, A. Manthiram, ACS Energy Lett. 5 (2020) 1177-1185.
doi: 10.1021/acsenergylett.0c00292
X. Liu, Q. He, H. Yuan, et al., J. Energy Chem. 48 (2020) 109-115.
doi: 10.1016/j.jechem.2020.01.003
P.Y. Chen, C. Yan, P. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 18031-18036.
doi: 10.1002/anie.202101958
T. Liu, H. Li, J. Yue, et al., Angew. Chem. Int. Ed. 60 (2021) 17547-17555.
doi: 10.1002/anie.202103303
M. Zhao, X.Y. Li, X. Chen, et al., eScience 1 (2021) 44-52.
doi: 10.1016/j.esci.2021.08.001
C. Zhao, G.L. Xu, Z. Yu, et al., Nat. Nanotechnol. 16 (2021) 166-173.
doi: 10.1038/s41565-020-00797-w
G. Ye, M. Zhao, L.P. Hou, et al., J. Energy Chem. 66 (2022) 24-29.
doi: 10.1016/j.jechem.2021.07.010
Y.W. Song, J.L. Qin, C.X. Zhao, et al., J. Energy Chem. 64 (2022) 568-573.
doi: 10.1016/j.jechem.2021.05.023
D. Andre, S.J. Kim, P. Lamp, et al., J. Mater. Chem. A 3 (2015) 6709-6732.
doi: 10.1039/C5TA00361J
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
Shuo Zhang , Haitao Liao , Zhi-Qun Liu , Chong Yan , Jia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
Jiao Wang , Shuang-Yan Lang , Zhen-Zhen Shen , Gui-Xian Liu , Jian-Xin Tian , Yuan Li , Rui-Zhi Liu , Rui Wen . In situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Hongbin Liu , Putao Zhang . Effective approach to stabilize silicon anode: Controllable molecular construction of artificial solid electrolyte interphase. Chinese Journal of Structural Chemistry, 2025, 44(3): 100444-100444. doi: 10.1016/j.cjsc.2024.100444
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Jun Jiang , Tong Guo , Wuxin Bai , Mingliang Liu , Shujun Liu , Zhijie Qi , Jingwen Sun , Shugang Pan , Aleksandr L. Vasiliev , Zhiyuan Ma , Xin Wang , Junwu Zhu , Yongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575