Controllable fabrication of a supramolecular polymer incorporating twisted cucurbit[14]uril and cucurbit[8]uril via self-sorting
-
* Correponding author.
E-mail address: gyhxxiaoxin@163.com (X. Xiao).
Citation:
Wei Zhang, Yang Luo, Jie Zhao, Chao Zhang, Xin-Long Ni, Zhu Tao, Xin Xiao. Controllable fabrication of a supramolecular polymer incorporating twisted cucurbit[14]uril and cucurbit[8]uril via self-sorting[J]. Chinese Chemical Letters,
;2022, 33(5): 2455-2458.
doi:
10.1016/j.cclet.2021.11.053
R. Zhao, Y.J. Zhou, F.H. Huang, et al., Chin. J. Polym. Sci. 38 (2020) 1-8.
doi: 10.1007/s10118-019-2305-1
X.F. Ji, F. Wang, F.H. Huang, et al., Chin. J. Chem. 38 (2020) 1473-1479.
doi: 10.1002/cjoc.202000314
A.R. Palmans, E.W. Meijer, Angew. Chem. Int. Ed. 46 (2007) 8948-8968.
doi: 10.1002/anie.200701285
C.B. Winiger, S. Li, R. Haner, et al., Angew. Chem. Int. Ed. 53 (2014) 13609-13613.
doi: 10.1002/anie.201407968
C.C. Lee, C. Grenier, E.W. Meijer, et al., Chem. Soc. Rev. 38 (2009) 671.
doi: 10.1039/B800407M
J.R. Kumpfer, S.J. Rowan, J. Am. Chem. Soc. 133 (2011) 12866-128743.
doi: 10.1021/ja205332w
W. Weng, J.B. Beck, S.J. Rowan, et al., J. Am. Chem. Soc. 128 (2006) 11663-11672.
doi: 10.1021/ja063408q
X. Xiao, J.S. Sun, J.Z. Jiang, Chem. Eur. J. 19 (2013) 16891-16896.
doi: 10.1002/chem.201303530
Z.Y. Zhang, Y. Chen, Y. Liu, Angew. Chem. Int. Ed. 58 (2019) 6028-6032.
doi: 10.1002/anie.201901882
T.K. Ellis, M. Galerne, J.J. Armao, et al., Angew. Chem. Int. Ed. 57 (2018) 15749-15753.
doi: 10.1002/anie.201809756
B. Qin, S. Zhang, X. Zhang, et al., Angew. Chem. Int. Ed. 58 (2017) 7639-7643.
Q. Li, K.C. Jie, F.H. Huang, et al., Angew. Chem. Int. Ed. 59 (2020) 5355-5358.
doi: 10.1002/anie.201916041
E. Krieg, M.M.C. Bastings, P. Besenius, et al., Chem. Rev. 116 (2016) 2414-2477.
doi: 10.1021/acs.chemrev.5b00369
L. Wang, L. Cheng, F.H. Huang, et al., J. Am. Chem. Soc. 142 (2020) 2051-2058.
doi: 10.1021/jacs.9b12164
H.L. Sun, H.Y. Zhang, Y. Liu, et al., Chem. Asian J. 12 (2017) 265-270.
doi: 10.1002/asia.201601545
M.Z. Zuo, W.R. Qian, L.Y. Wang, et al., Small 14 (2018) 1801942.
Y.C. Yang, X.L. Ni, X. Zhang, et al., Chem. Commun. 55 (2019) 13836.
doi: 10.1039/C9CC07127J
D. Yang, M. Liu, C. Redshaw, et al., Coordin. Chem. Rev. 434 (2021) 213733.
doi: 10.1016/j.ccr.2020.213733
Y.C. Yang, H. Hu, X. Zhang, et al., Macromol. Rapid Commun. 41 (2020) 2000080.
doi: 10.1002/marc.202000080
X.Y. Dai, X.Y. Dong, Y. Liu, et al., Biomacromolecules 21 (2020) 5369-5379.
doi: 10.1021/acs.biomac.0c01547
W.R. Qian, M.Z. Zuo, R.B. Wang, et al., Chem. Commun. 56 (2020) 7301.
doi: 10.1039/D0CC02962A
S.W. Guo, Q.X. Huang, R.B. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 618-623.
doi: 10.1002/anie.202013975
J. Kang, D. Miyajima, T. Aida, et al., Science 347 (2015) 646-651.
doi: 10.1126/science.aaa4249
S. Ogi, V. Stepanenko, K. Sugiyasu, et al., J. Am. Chem. Soc. 137 (2015) 3300-3307.
doi: 10.1021/ja511952c
Z. Huang, L. Yang, X. Zhang, Angew. Chem. Int. Ed. 53 (2014) 5351-5355.
doi: 10.1002/anie.201402817
H.B. Qiu, Z.M. Hudson, I. Manners, et al., Science 347 (2015) 1329-1332.
doi: 10.1126/science.1261816
W. Jiang, A. Schafer, P.C. Mohr, et al., J. Am. Chem. Soc. 132 (2010) 2309-2320.
doi: 10.1021/ja9101369
L. Wang, L. Cheng, X.Z. Yan, et al., J. Am. Chem. Soc. 142 (2020) 2051-2058.
doi: 10.1021/jacs.9b12164
H.L. Sun, H.Y. Zhang, Y. Liu, et al., Chem. Asian J. 12 (2017) 265-270.
doi: 10.1002/asia.201601545
J. Lagona, P. Mukhopadhyay, L. Isaacs, et al., Angew. Chem. Int. Ed. 44 (2005) 4844.
doi: 10.1002/anie.200460675
X.L. Ni, X. Xiao, Z. Tao, et al., Acc. Chem. Res. 47 (2014) 1386-1395.
doi: 10.1021/ar5000133
Y. Huang, R.H. Gao, Z. Tao, et al., Angew. Chem. Int. Ed. 60 (2021) 15166-15191.
doi: 10.1002/anie.202002666
M. Liu, J.L. Kan, Z. Tao, et al., Sensor Actuat. B: Chem. 283 (2019) 290-297.
doi: 10.1016/j.snb.2018.12.024
M. Liu, L.X. Chen, Z. Tao, et al., ACS Appl. Mater. Inter. 13 (2021) 7434-7442.
doi: 10.1021/acsami.0c20292
W.T. Xu, Y. Luo, X. Xiao, et al., J. Agric. Food Chem. 69 (2021) 584-591.
doi: 10.1021/acs.jafc.0c05577
S.J. Barrow, S. Kasera, M.J. Rowland, et al., Chem. Rev. 115 (2015) 12320-12406.
doi: 10.1021/acs.chemrev.5b00341
Y.L. Liu, Z.H. Huang, X. Zhang, et al., Chem. Commun. 49 (2013) 5766-5768.
doi: 10.1039/c3cc41864b
R.L. Lin, J.X. Liu, C. Redshaw, et al., Inorg. Chem. Front. 7 (2020) 3217-3246.
doi: 10.1039/D0QI00529K
K.M. Park, M.Y. Hur, K. Kim, et al., Chem. Commun. 55 (2019) 10654-10664.
doi: 10.1039/C9CC05567C
X.J. Cheng, L.L. Liang, Z. Tao, et al., Angew. Chem. Int. Ed. 52 (2013) 7393-7396.
Z.Z. Gao, J. Zhang, X. Xiao, et al., Org. Chem. Front. 3 (2016) 1144.
doi: 10.1039/C6QO00310A
Q. Li, S.C. Qiu, G. Wei, et al., Org. Lett. 18 (2016) 4020-4023.
doi: 10.1021/acs.orglett.6b01842
L.H. Chen, Z.H. Huang, X. Zhang, et al., Polym. Chem. 7 (2016) 1397.
doi: 10.1039/C5PY01923K
Y.C. Yang, H. Hu, X. Zhang, et al., Mater. Chem. Front. 3 (2019) 806-811.
doi: 10.1039/C9QM00028C
Xiao-Hai Yang , Fang Zhao , Lei-Liang He , Ke-Min Wang , Jin Huang , Qing Wang , Jian-Bo Liu , Meng Yang . A facile approach toward multicolor polymers:Supramolecular self-assembly via host-guest interaction. Chinese Chemical Letters, 2014, 25(10): 1318-1322. doi: 10.1016/j.cclet.2014.05.051
Tian-Tian Cao , Xu-Yang Yao , Jing Zhang , Qiao-Chun Wang , Xiang Ma . A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness. Chinese Chemical Letters, 2015, 26(7): 867-871. doi: 10.1016/j.cclet.2015.01.032
Chun Liu , Yu Xia , Zhu Tao , Xin-Long Ni . Host-guest interaction tailored cucurbit[6]uril-based supramolecular organic frameworks (SOFs) for drug delivery. Chinese Chemical Letters, 2022, 33(3): 1529-1532. doi: 10.1016/j.cclet.2021.08.108
Ming Liu , Yang Zhou , Lixia Chen , Bing Bian , Xin Xiao , Zhu Tao . Cucurbit[n]uril-calix[n]arene-based supramolecular frameworks assembled using the outer surface interactions of cucurbit[n]urils. Chinese Chemical Letters, 2021, 32(1): 375-379. doi: 10.1016/j.cclet.2020.03.042
Yin Zhi-Jian , Wu Zong-Quan , Lin Feng , Qi Qiao-Yan , Xu Xiao-Na , Zhao Xin . A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8]uril-encapsulation-enhanced donor-acceptor interaction. Chinese Chemical Letters, 2017, 28(6): 1167-1171. doi: 10.1016/j.cclet.2017.03.029
Yang Luo , Wei Zhang , Ming Liu , Jie Zhao , Ying Fan , Bing Bian , Zhu Tao , Xin Xiao . A supramolecular fluorescent probe based on cucurbit[10]uril for sensing the pesticide dodine. Chinese Chemical Letters, 2021, 32(1): 367-370. doi: 10.1016/j.cclet.2020.02.023
Xiao Tangxin , Zhou Ling , Sun Xiao-Qiang , Huang Feihe , Lin Chen , Wang Leyong . Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host-guest interactions. Chinese Chemical Letters, 2020, 31(1): 1-9. doi: 10.1016/j.cclet.2019.05.011
Tangxin Xiao , Jie Wang , Yong Shen , Cheng Bao , Zheng-Yi Li , Xiao-Qiang Sun , Leyong Wang . Preparation of a fixed-tetraphenylethylene motif bridged ditopic benzo-21-crown-7 and its application for constructing AIE supramolecular polymers. Chinese Chemical Letters, 2021, 32(4): 1377-1380. doi: 10.1016/j.cclet.2020.10.037
Zhou Maogui , Qin Shiya , Feng Zhenzhen , Song Chunxia , Zhang Hua , Li Wenshan , Wang Qing , Liu Jianbo , Huang Jin , Yang Xiaohai , Wang Kemin . A simple and sensitive assay for apurinic/apyrimidinic endonuclease 1 activity based on host-guest interaction of β-cyclodextrin polymer and pyrene. Chinese Chemical Letters, 2018, 29(6): 973-976. doi: 10.1016/j.cclet.2017.10.010
Xu Chao , Xu Lei , Ma Xiang . A linear supramolecular polymer based on host-guest recognition and metal-ligand coordination. Chinese Chemical Letters, 2018, 29(6): 970-972. doi: 10.1016/j.cclet.2017.11.045
Chen Yanmei , Sun Siyu , Lu Dou , Shi Yujun , Yao Yong . Water-soluble supramolecular polymers constructed by macrocycle-based host-guest interactions. Chinese Chemical Letters, 2019, 30(1): 37-43. doi: 10.1016/j.cclet.2018.10.022
Yiyun Gao , Yan Gao , Yuanfu Ding , Huaping Tan , Aihua Zou , Shengke Li . Polysaccharide-based supramolecular drug delivery systems mediated via host-guest interactions of cucurbiturils. Chinese Chemical Letters, 2021, 32(3): 949-953. doi: 10.1016/j.cclet.2020.08.010
He Mengnan , Chen Xiaosong , Liu Donghua , Wei Dacheng . Two-dimensional self-healing hydrogen-bond-based supramolecular polymer film. Chinese Chemical Letters, 2019, 30(5): 961-965. doi: 10.1016/j.cclet.2019.01.008
Yang Xiran , Liu Fengbo , Zhao Zhiyong , Liang Feng , Zhang Haijun , Liu Simin . Cucurbit[10]uril-based chemistry. Chinese Chemical Letters, 2018, 29(11): 1560-1566. doi: 10.1016/j.cclet.2018.01.032
Ding Man-Hua , Chen Xiao-Ming , Tang Lin-Li , Zeng Fei . One-pot synthesis of well-organized heteropolyrotaxane via self-sorting strategy. Chinese Chemical Letters, 2017, 28(7): 1375-1379. doi: 10.1016/j.cclet.2017.03.009
Wu Wei
, Song Sen
, Cui Xiaowei
, Sun Tao
, Zhang Jian-Xin
, Ni Xin-Long
. pH-Switched fluorescent pseudorotaxane assembly of cucurbit[
Chao Liu , Ruihan Gao , Yunqian Zhang , Qianjiang Zhu , Zhu Tao . Cucurbit[6]uril-based supramolecular frameworks assembled via the outer surface interaction of cucurbit[n]urils. Chinese Chemical Letters, 2021, 32(1): 362-366. doi: 10.1016/j.cclet.2020.05.014
Xu Huan , Zhou Chaoyu , Jian Chuanjiang , Yang Sunhai , Liu Miaochang , Huang Xiaobo , Gao Wenxia , Wu Huayue . Salt/current-triggered stabilization of β-cyclodextrins encapsulated host-guest low-molecular-weight gels. Chinese Chemical Letters, 2020, 31(2): 369-372. doi: 10.1016/j.cclet.2019.07.048
Shi Chao , Li Lin , Yang Lixia , Li Yi . Molecular simulations of host-guest interactions between zeolite framework STW and its organic structure-directing agents. Chinese Chemical Letters, 2020, 31(7): 1951-1955. doi: 10.1016/j.cclet.2020.01.016