Recent advances in enhancing reactive oxygen species based chemodynamic therapy
-
* Corresponding author.
E-mail address: chygong14@163.com (C. Gong).
Citation:
Xinchao Li, Rui Luo, Xiuqi Liang, Qinjie Wu, Changyang Gong. Recent advances in enhancing reactive oxygen species based chemodynamic therapy[J]. Chinese Chemical Letters,
;2022, 33(5): 2213-2230.
doi:
10.1016/j.cclet.2021.11.048
C. Zhang, W. Bu, D. Ni, et al., Angew. Chem. Int. Ed. 55 (2016) 2101-2106.
doi: 10.1002/anie.201510031
Z. Tang, Y. Liu, M. He, W. Bu, Angew. Chem. Int. Ed. 58 (2019) 946-956.
doi: 10.1002/anie.201805664
M. Schieber, N.S. Chandel, Curr. Biol. 24 (2014) R453-R462.
doi: 10.1016/j.cub.2014.03.034
X.Q. Wang, W. Wang, M. Peng, X.Z. Zhang, Biomaterials 266 (2021) 120474.
doi: 10.1016/j.biomaterials.2020.120474
G.P. Bienert, A.L. Møller, K.A. Kristiansen, et al., J. Biol. Chem. 282 (2007) 1183-1192.
doi: 10.1074/jbc.M603761200
Z. Zhou, J. Song, L. Nie, X. Chen, Chem. Soc. Rev. 45 (2016) 6597-6626.
doi: 10.1039/C6CS00271D
Q. An, C. Sun, D. Li, et al., ACS Appl. Mater. Interfaces 5 (2013) 13248-13257.
doi: 10.1021/am4042367
M. Huo, L. Wang, Y. Chen, J. Shi, Nat. Commun. 8 (2017) 357.
doi: 10.1038/s41467-017-00424-8
D. Cioloboc, C. Kennedy, E.N. Boice, et al., Biomacromolecules 19 (2017) 178-187.
K.T. Lee, Y.J. Lu, F.L. Mi, et al., ACS Appl. Mater. Interfaces 9 (2017) 1273-1279.
doi: 10.1021/acsami.6b13529
H. Bi, Y. Dai, P. Yang, et al., Small 14 (2018) 1703809.
doi: 10.1002/smll.201703809
Y. Huang, Y. Jiang, Z. Xiao, et al., Chem. Eng. J. 380 (2020) 122369.
doi: 10.1016/j.cej.2019.122369
M. Breunig, S. Bauer, A. Göpferich, Eur. J. Pharm. Biopharm. 68 (2008) 112-128.
doi: 10.1016/j.ejpb.2007.06.010
Y. Liu, X. Ji, W.W. Tong, et al., Angew. Chem. Int. Ed. 57 (2018) 1510-1513.
doi: 10.1002/anie.201710144
L. Zhang, S.S. Wan, C.X. Li, et al., Nano Lett. 18 (2018) 7609-7618.
doi: 10.1021/acs.nanolett.8b03178
W. Tang, H. Gao, D. Ni, et al., J. Nanobiotechnol. 17 (2019) 68.
doi: 10.1186/s12951-019-0501-3
J. Li, K. Yi, Y. Lei, et al., Chem. Commun. 56 (2020) 6285-6288.
doi: 10.1039/D0CC01331E
T. Gong, Y. Li, B. Lv, et al., ACS Nano 14 (2020) 3032-3040.
doi: 10.1021/acsnano.9b07898
P. Zhao, Z. Tang, X. Chen, et al., Mater. Horiz. 6 (2019) 369-374.
doi: 10.1039/C8MH01176A
N. Masomboon, C. Ratanatamskul, M.C. Lu, Environ. Sci. Technol. 43 (2009) 8629-8634.
doi: 10.1021/es802274h
E. Brillas, M.A. Baños, S. Camps, et al., New J. Chem. 28 (2004) 314-322.
doi: 10.1039/B312445B
T. Soltani, B.K. Lee, Chem. Eng. J. 313 (2017) 1258-1268.
doi: 10.1016/j.cej.2016.11.016
T. Rae, P. Schmidt, R. Pufahl, et al., Science 284 (1999) 805-808.
doi: 10.1126/science.284.5415.805
P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, in: Heavy Metal Toxicity and the Environment, in: Molecular, Clinical and Environmental Toxicology, Springer, 2012, pp. 133-164.
K. Jomova, M. Valko, Toxicology 283 (2011) 65-87.
doi: 10.1016/j.tox.2011.03.001
B. Ma, S. Wang, F. Liu, et al., J. Am. Chem. Soc. 141 (2018) 849-857.
Z. Xie, S. Liang, X. Cai, et al., ACS Appl. Mater. Interfaces 11 (2019) 31671-31680.
doi: 10.1021/acsami.9b10685
X. Wang, X. Zhong, H. Lei, et al., Chem. Mater. 31 (2019) 6174-6186.
doi: 10.1021/acs.chemmater.9b01958
S. Gao, Y. Jin, K. Ge, et al., Adv. Sci. 6 (2019) 1902137.
doi: 10.1002/advs.201902137
E. Ember, S. Rothbart, R. Puchta, R. van Eldik, New J. Chem. 33 (2009) 34-49.
doi: 10.1039/B813725K
L.S. Lin, J. Song, L. Song, et al., Angew. Chem. Int. Ed. 57 (2018) 4902-4906.
doi: 10.1002/anie.201712027
L.Y. Duan, Y.J. Wang, J.W. Liu, et al., Chem. Commun. 54 (2018) 8214-8217.
doi: 10.1039/C8CC03922D
S.K. Maji, A.K. Mandal, K.T. Nguyen, et al., ACS Appl. Mater. Interfaces 7 (2015) 9807-9816.
doi: 10.1021/acsami.5b01758
P. Liu, Y. Wang, L. An, et al., ACS Appl. Mater. Interfaces 10 (2018) 38833-38844.
doi: 10.1021/acsami.8b15678
J.R. Kanofsky, J. Biol. Chem. 259 (1984) 5596-5600.
doi: 10.1016/S0021-9258(18)91055-0
Y. Dai, S. Cheng, Z. Wang, et al., ACS Nano 12 (2018) 455-463.
doi: 10.1021/acsnano.7b06852
Q. Wu, Z. He, X. Wang, et al., Nat. Commun. 10 (2019) 240.
doi: 10.1038/s41467-018-08234-2
Y. Chen, J. Deng, F. Liu, et al., Adv. Healthc. Mater. 8 (2019) 1900366.
doi: 10.1002/adhm.201900366
B. Ngo, J.M. Van Riper, L.C. Cantley, J. Yun, Nat. Rev. Cancer 19 (2019) 271-282.
doi: 10.1038/s41568-019-0135-7
H. Zhu, G. Cao, C. Qiang, et al., Biomater. Sci. 8 (2020) 3844-3855.
doi: 10.1039/D0BM00533A
Q. Chen, X. Shan, S. Shi, et al., J. Mater. Chem. B 8 (2020) 4056-4066.
doi: 10.1039/D0TB00248H
X. Meng, L. Chen, R. Lv, et al., J. Mater. Chem. B 8 (2020) 2177-2188.
doi: 10.1039/D0TB00008F
F. Deng, G. Fan, P. Yuan, et al., Chem. Commun. 56 (2020) 14633-14636.
doi: 10.1039/D0CC06483A
J. Lin, T. He, Y. Yuan, et al., Angew. Chem. Int. Ed. 59 (2020) 6047-6054.
J. Chen, X. Wang, Y. Zhang, et al., Biomaterials 266 (2021) 120457.
doi: 10.1016/j.biomaterials.2020.120457
B. Ma, S. Wang, F. Liu, et al., J. Am. Chem. Soc. 141 (2019) 849-857.
doi: 10.1021/jacs.8b08714
Z. Xie, S. Liang, X. Cai, et al., ACS Appl. Mater. Interfaces 11 (2019) 31671-31680.
doi: 10.1021/acsami.9b10685
Y. Wang, Z. Li, Y. Hu, et al., Biomaterials 255 (2020) 120167.
doi: 10.1016/j.biomaterials.2020.120167
Y. Wang, M. Song, Colloid. Surface. B 192 (2020) 111029.
doi: 10.1016/j.colsurfb.2020.111029
J. Tan, X. Duan, F. Zhang, et al., Adv. Sci. 7 (2020) 2003036.
doi: 10.1002/advs.202003036
X.F. Zhu, Y.N. Liu, G.L. Yuan, et al., Nanoscale 12 (2020) 22317-22329.
doi: 10.1039/D0NR03931D
C. Qi, J. He, L.H. Fu, et al., ACS Nano 15 (2020) 1627-1639.
P. Sun, Q. Deng, L. Kang, et al., ACS Nano 14 (2020) 13894-13904.
doi: 10.1021/acsnano.0c06290
P. Wang, C. Liang, J. Zhu, et al., ACS Appl. Mater. Interfaces 11 (2019) 41140-41147.
doi: 10.1021/acsami.9b16617
L.H. Fu, Y.R. Hu, C. Qi, et al., ACS Nano 13 (2019) 13985-13994.
doi: 10.1021/acsnano.9b05836
Y.N. Wang, D. Song, W.S. Zhang, Z.R. Xu, Colloid. Surface. B 197 (2021) 111437.
doi: 10.1016/j.colsurfb.2020.111437
T. Chen, R. Huang, J. Liang, et al., Chem. Eur. J. 26 (2020) 15159-15169.
doi: 10.1002/chem.202002335
G. Liu, J. Zhu, H. Guo, et al., Angew. Chem. Int. Ed. 58 (2019) 18641-18646.
doi: 10.1002/anie.201910815
Y. Chen, M. Gao, L. Zhang, et al., Adv. Healthc. Mater. 10 (2020) 2001665.
P. Liu, Y. Wang, L. An, et al., ACS Appl. Mater. Interfaces 10 (2018) 38833-38844.
doi: 10.1021/acsami.8b15678
Y. Zhu, Y. Wang, G.R. Williams, et al., Adv. Sci. 7 (2020) 2000272.
doi: 10.1002/advs.202000272
S. Fu, R. Yang, L. Zhang, et al., Biomaterials 257 (2020) 120279.
doi: 10.1016/j.biomaterials.2020.120279
L. Yan, Y. Wang, T. Hu, et al., J. Mater. Chem. B 8 (2020) 1445-1455.
doi: 10.1039/C9TB02591J
W. Zhen, Y. Liu, W. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 9491-9497.
doi: 10.1002/anie.201916142
W. Ke, J. Li, F. Mohammed, et al., ACS Nano 13 (2019) 2357-2369.
Y. Zhang, L. Lin, L. Liu, et al., Biomaterials 216 (2019) 119255.
doi: 10.1016/j.biomaterials.2019.119255
X. Liu, Y. Liu, J. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 23065-23071.
doi: 10.1021/acsami.9b08257
S. Lei, J. Chen, K. Zeng, et al., Nano Res. 12 (2019) 1071-1082.
doi: 10.1007/s12274-019-2348-1
A. Northup, D. Cassidy, J. Hazard. Mater. 152 (2008) 1164-1170.
doi: 10.1016/j.jhazmat.2007.07.096
L. Lin, T. Huang, J. Song, et al., J. Am. Chem. Soc. 141 (2019) 9937-9945.
doi: 10.1021/jacs.9b03457
S. Gao, X. Lu, P. Zhu, et al., J. Mater. Chem. B 7 (2019) 3599-3609.
doi: 10.1039/C9TB00525K
C. You, Z. Gao, H. Wu, et al., J. Mater. Chem. B 7 (2019) 314-323.
doi: 10.1039/C8TB02947D
E. Blanco, E.A. Bey, C. Khemtong, et al., Cancer Res. 70 (2010) 3896-3904.
doi: 10.1158/0008-5472.CAN-09-3995
X. Ma, X. Huang, Z. Moore, et al., J. Control. Release 200 (2015) 201-211.
doi: 10.1016/j.jconrel.2014.12.027
X. Ma, Z.R. Moore, G. Huang, et al., J. Drug. Target 23 (2015) 672-680.
doi: 10.3109/1061186X.2015.1073296
S. Wang, Z. Wang, G. Yu, et al., Adv. Sci. 6 (2019) 1801986.
doi: 10.1002/advs.201801986
S. Wang, G. Yu, Z. Wang, et al., Angew. Chem. Int. Ed. 131 (2019) 14900-14905.
doi: 10.1002/ange.201908997
H.J. Kim, J.H. Lee, S.J. Kim, et al., J. Neurosci. 30 (2010) 3933-3946.
doi: 10.1523/JNEUROSCI.6054-09.2010
T. Itoh, R. Terazawa, K. Kojima, et al., Free Radical Res. 45 (2011) 1033-1039.
doi: 10.3109/10715762.2011.591391
P.A. Ma, H. Xiao, C. Yu, et al., Nano Lett. 17 (2017) 928-937.
doi: 10.1021/acs.nanolett.6b04269
Z. Yang, Y. Dai, C. Yin, et al., Adv. Mater. 30 (2018) 1707509.
doi: 10.1002/adma.201707509
L.B. Priya, R. Baskaran, C.Y. Huang, V.V. Padma, Sci. Rep. 7 (2017) 12283.
doi: 10.1038/s41598-017-12060-9
M. Gilleron, X. Marechal, D. Montaigne, et al., Biochem. Bioph. Res. Co. 388 (2009) 727-731.
doi: 10.1016/j.bbrc.2009.08.085
S. Wang, L. Yang, H.Y. Cho, et al., Biomaterials 224 (2019) 119498.
doi: 10.1016/j.biomaterials.2019.119498
T. Xue, C. Xu, Y. Wang, et al., Biomater. Sci. 7 (2019) 4615-4623.
doi: 10.1039/C9BM01044K
E.M. Nelson, K.M. Tewey, L.F. Liu, P. Natl. Acad. Sci. 81 (1984) 1361-1365.
doi: 10.1073/pnas.81.5.1361
N. Sen, B.B. Das, A. Ganguly, et al., Cell Death Differ. 11 (2004) 924-936.
doi: 10.1038/sj.cdd.4401435
J. Sanchez-Alcazar, J. Ault, A. Khodjakov, E. Schneider, Cell Death Differ. 7 (2000) 1090.
doi: 10.1038/sj.cdd.4400740
W. Zhang, X. Hu, Q. Shen, D. Xing, Nat. Commun. 10 (2019) 1704.
doi: 10.1038/s41467-019-09566-3
J.X. Fan, M.Y. Peng, H. Wang, et al., Adv. Mater. 31 (2019) 1808278.
doi: 10.1002/adma.201808278
G. Peltier, E.M. Aro, T. Shikanai, Annu. Rev. Plant Biol. 67 (2016) 55-80.
doi: 10.1146/annurev-arplant-043014-114752
D.R. Kashyap, M. Kuzma, D.A. Kowalczyk, et al., Mol. Microbiol. 105 (2017) 755-776.
doi: 10.1111/mmi.13733
L. Hang, H. Li, T. Zhang, et al., ACS Appl. Mater. Interfaces 11 (2019) 39493-39502.
doi: 10.1021/acsami.9b13470
H. Wu, F. Chen, C. You, et al., Small 16 (2020) 2001805.
doi: 10.1002/smll.202001805
D. Gu, P. An, X. He, et al., Colloid. Surf. B 189 (2020) 110810.
doi: 10.1016/j.colsurfb.2020.110810
J. Ming, T. Zhu, W. Yang, et al., ACS Appl. Mater. Interfaces 12 (2020) 51249-51262.
doi: 10.1021/acsami.0c15211
H. Wu, D. Gu, S. Xia, et al., Biomater. Sci. 9 (2021) 1020-1033.
doi: 10.1039/D0BM01734E
X. Mei, T. Hu, H. Wang, et al., Biomaterials 258 (2020) 120257.
doi: 10.1016/j.biomaterials.2020.120257
Y. Guo, H. -. R. Jia, X. Zhang, et al., Small 16 (2020) 2000897.
doi: 10.1002/smll.202000897
X. Liu, Y. Liu, J. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 23065-23071.
doi: 10.1021/acsami.9b08257
Y. Ding, H. Xu, C. Xu, et al., Adv. Sci. 7 (2020) 2001060.
doi: 10.1002/advs.202001060
J. Lu, Z. Guo, S. Che, et al., J. Mater. Chem. B 8 (2020) 11082-11089.
doi: 10.1039/D0TB01964J
T. Li, F. He, B. Liu, et al., ACS Appl. Mater. Interfaces 12 (2020) 56886-56897.
doi: 10.1021/acsami.0c19330
H. Tian, M. Zhang, G. Jin, et al., J. Colloid Interface Sci. 587 (2021) 358-366.
doi: 10.1016/j.jcis.2020.12.028
C. Xie, D. Cen, Z. Ren, et al., Adv. Sci. 7 (2020) 1903512.
doi: 10.1002/advs.201903512
Y. Han, J. Ouyang, Y. Li, et al., ACS Appl. Mater. Interfaces 12 (2020) 288-297.
doi: 10.1021/acsami.9b18676
S. Wang, G. Yu, Z. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 14758-14763.
doi: 10.1002/anie.201908997
Y. Sang, F. Cao, W. Li, et al., J. Am. Chem. Soc. 142 (2020) 5177-5183.
doi: 10.1021/jacs.9b12873
Y. Li, P. Zhao, T. Gong, et al., Angew. Chem. Int. Ed. 59 (2020) 22537-22543.
doi: 10.1002/anie.202003653
Z. Tian, H. Liu, Z. Guo, et al., Small 16 (2020) 2004654.
doi: 10.1002/smll.202004654
S.S. Sabharwal, P.T. Schumacker, Nat. Rev. Cancer 14 (2014) 709.
doi: 10.1038/nrc3803
K. Kim, I. Kim, K.Y. Lee, et al., J. Biol. Chem. 263 (1988) 4704-4711.
doi: 10.1016/S0021-9258(18)68840-4
S.G. Rhee, H.Z. Chae, K. Kim, Free Radical Bio. Med. 38 (2005) 1543-1552.
doi: 10.1016/j.freeradbiomed.2005.02.026
B. Ding, S. Shao, F. Jiang, et al., Chem. Mater. 31 (2019) 2651-2660.
doi: 10.1021/acs.chemmater.9b00893
F. Liu, L. Lin, Y. Zhang, et al., Adv. Mater. 31 (2019) 1902885.
doi: 10.1002/adma.201902885
F. Liu, L. Lin, S. Sheng, et al., Nanoscale 12 (2020) 1349-1355.
doi: 10.1039/C9NR09858E
Q. Chen, J. Zhou, Z. Chen, et al., ACS Appl. Mater. Interfaces 11 (2019) 30551-30565.
doi: 10.1021/acsami.9b09323
L. Feng, S. Gai, F. He, et al., ACS Nano 14 (2020) 7245-7258.
doi: 10.1021/acsnano.0c02458
C. Yang, M.R. Younis, J. Zhang, et al., Small 16 (2020) e2001518.
doi: 10.1002/smll.202001518
S. Liu, Y. Zhou, C. Hu, et al., ACS Appl. Mater. Interfaces 12 (2020) 43456-43465.
doi: 10.1021/acsami.0c12824
A.D. Bokare, W. Choi, J. Hazard. Mater. 275 (2014) 121-135.
doi: 10.1016/j.jhazmat.2014.04.054
F. Wang, X. Liu, Chem. Soc. Rev. 38 (2009) 976-989.
doi: 10.1039/b809132n
S. Dong, J. Xu, T. Jia, et al., Chem. Sci. 10 (2019) 4259-4271.
doi: 10.1039/C9SC00387H
P. Hu, T. Wu, W. Fan, et al., Biomaterials 141 (2017) 86-95.
doi: 10.1016/j.biomaterials.2017.06.035
Y. Deng, J.D. Englehardt, Water Res. 40 (2006) 3683-3694.
doi: 10.1016/j.watres.2006.08.009
O.S.N. Sum, J. Feng, X. Hub, P.L. Yue, Top. Catal. 33 (2005) 233-242.
doi: 10.1007/s11244-005-2532-2
J.T. Robinson, K. Welsher, S.M. Tabakman, et al., Nano Res. 3 (2010) 779-793.
doi: 10.1007/s12274-010-0045-1
F. Zhou, X. Da, Z. Ou, et al., J. Biomed. Opt. 14 (2009) 021009.
doi: 10.1117/1.3078803
Z. Tang, H. Zhang, Y. Liu, et al., Adv. Mater. 29 (2017) 1701683.
doi: 10.1002/adma.201701683
R. Hu, Y. Fang, M. Huo, et al., Biomaterials 206 (2019) 101-114.
doi: 10.1016/j.biomaterials.2019.03.014
Y.G. Adewuyi, Environ. Sci. Technol. 39 (2005) 3409-3420.
doi: 10.1021/es049138y
P. Huang, X. Qian, Y. Chen, et al., J. Am. Chem. Soc. 139 (2017) 1275-1284.
doi: 10.1021/jacs.6b11846
M.C. Li, R. Hertz, D.M. Bergenstal, New Engl. J. Med. 259 (1958) 66-74.
doi: 10.1056/NEJM195807102590204
J. Chen, H. Luo, Y. Liu, et al., ACS Nano 11 (2017) 12849-12862.
doi: 10.1021/acsnano.7b08225
J. Chen, X. Wang, Y. Liu, et al., Chem. Eng. J. 369 (2019) 394-402.
doi: 10.1016/j.cej.2019.03.061
Y. Liu, W. Zhen, Y. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 2407-2412.
doi: 10.1002/anie.201813702
R.K. Jain, J. Clin. Oncol. 31 (2013) 2205-2218.
doi: 10.1200/JCO.2012.46.3653
Z. Li, X. Shan, Z. Chen, et al., Adv. Sci. 8 (2021) 2002589.
doi: 10.1002/advs.202002589
L. Li, Z. Yang, W. Fan, et al., Adv. Funct. Mater. 30 (2020) 1907716.
doi: 10.1002/adfm.201907716
K. Zhang, X. Meng, Z. Yang, et al., Biomaterials 258 (2020) 120278.
doi: 10.1016/j.biomaterials.2020.120278
R. Hertz, D.M. Bergenstal, M.B. Lipsett, et al., J. Am. Med. Dir. Assoc. 168 (1958) 845-854.
doi: 10.1001/jama.1958.03000070001001
C. Holohan, S. Van Schaeybroeck, D.B. Longley, P.G. Johnston, Nat. Rev. Cancer 13 (2013) 714.
doi: 10.1038/nrc3599
A.E. Kayl, C.A. Meyers, Curr. Opin. Obstet. Gyn. 18 (2006) 24-28.
doi: 10.1097/01.gco.0000192996.20040.24
R. Liang, Y. Chen, M. Huo, et al., Nanoscale Horiz. 4 (2019) 890-901.
doi: 10.1039/C9NH00008A
X. Peng, Q. Pan, B. Zhang, et al., Biomacromolecules 20 (2019) 2372-2383.
doi: 10.1021/acs.biomac.9b00367
F. Liu, S. Gong, M. Shen, et al., Chem. Eng. J. 403 (2021) 126305.
doi: 10.1016/j.cej.2020.126305
C. Liu, D. Wang, S. Zhang, et al., ACS Nano 13 (2019) 4267-4277.
doi: 10.1021/acsnano.8b09387
Z. Lei, X. Zhang, X. Zheng, et al., Org. Biomol. Chem. 16 (2018) 8613-8619.
doi: 10.1039/C8OB02391C
S. Sheng, F. Liu, L. Lin, et al., J. Control. Release 328 (2020) 631-639.
doi: 10.1016/j.jconrel.2020.09.029
X.L. Tang, Z. Wang, Y.Y. Zhu, et al., J. Control. Release 328 (2020) 100-111.
doi: 10.1016/j.jconrel.2020.08.035
B. Wang, Y. Dai, Y. Kong, et al., ACS Appl. Mater. Interfaces 12 (2020) 53634-53645.
doi: 10.1021/acsami.0c14046
J. Xu, R. Shi, G. Chen, et al., ACS Nano 14 (2020) 9613-9625.
doi: 10.1021/acsnano.0c00082
V. Shanmugam, S. Selvakumar, C.S. Yeh, Chem. Soc. Rev. 43 (2014) 6254-6287.
doi: 10.1039/C4CS00011K
A.M. Alkilany, L.B. Thompson, S.P. Boulos, et al., Adv. Drug Delivery Rev. 64 (2012) 190-199.
doi: 10.1016/j.addr.2011.03.005
S.H. Hu, R.H. Fang, Y.W. Chen, et al., Adv. Funct. Mater. 24 (2014) 4144-4155.
doi: 10.1002/adfm.201400080
Y. Ma, X. Liang, S. Tong, et al., Adv. Funct. Mater. 23 (2013) 815-822.
doi: 10.1002/adfm.201201663
Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Chem. Soc. Rev. 48 (2019) 2053-2108.
doi: 10.1039/C8CS00618K
F. Liu, L. Lin, Y. Zhang, et al., Adv. Mater. 31 (2019) 1902885.
doi: 10.1002/adma.201902885
Z. Zhao, K. Xu, C. Fu, et al., Biomaterials 219 (2019) 119379.
doi: 10.1016/j.biomaterials.2019.119379
Q. Zhang, Q. Guo, Q. Chen, et al., Adv. Sci. 7 (2020) 1902576.
doi: 10.1002/advs.201902576
L.D. Kong, F. Yuan, P.P. Huang, et al., Small 16 (2020) 2004161.
doi: 10.1002/smll.202004161
K. Hu, L. Xie, Y.D. Zhang, et al., Nat. Commun. 11 (2020) 2778.
doi: 10.1038/s41467-020-16513-0
Z. Zheng, Q. Chen, S. Rong, et al., Nanoscale 12 (2020) 15845-15856.
doi: 10.1039/D0NR03661G
E.M. Selwan, B.T. Finicle, S.M. Kim, A.L. Edinger, FEBS Lett. 590 (2016) 885-907.
doi: 10.1002/1873-3468.12121
L.H. Fu, C. Qi, J. Lin, P. Huang, Chem. Soc. Rev. 47 (2018) 6454-6472.
doi: 10.1039/C7CS00891K
O.D. Maddocks, C.R. Berkers, S.M. Mason, et al., Nature 493 (2013) 542.
doi: 10.1038/nature11743
C. Zhang, D. Ni, Y. Liu, et al., Nat. Nanotechnol. 12 (2017) 378.
doi: 10.1038/nnano.2016.280
S. Yu, Z. Chen, X. Zeng, et al., Theranostics 9 (2019) 8026.
doi: 10.7150/thno.38261
G. Bergers, D. Hanahan, Nat. Rev. Cancer 8 (2008) 592.
doi: 10.1038/nrc2442
J. Xiao, G. Zhang, R. Xu, et al., Biomaterials (2019) 119254.
X. Lin, J. Song, X. Chen, H. Yang, Angew. Chem. Int. Ed. 58 (2019) 1682-1688.
S. Bai, N. Yang, X. Wang, et al., ACS Nano 14 (2020) 15119-15130.
doi: 10.1021/acsnano.0c05235
C. Szabo, Nat. Rev. Drug Discov. 15 (2016) 185-203.
doi: 10.1038/nrd.2015.1
Z. Wang, M. Zhan, W. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 4720-4731.
doi: 10.1002/anie.202013301
D. Fukumura, S. Kashiwagi, R.K. Jain, Nat. Rev. Cancer 6 (2006) 521.
doi: 10.1038/nrc1910
Y. Hu, T. Lv, Y. Ma, et al., Nano Lett. 19 (2019) 2731-2738.
doi: 10.1021/acs.nanolett.9b01093
P. Sun, L. Jia, J. Hai, et al., Adv. Healthc. Mater. 10 (2020) 2001728.
T. He, X. Qin, C. Jiang, et al., Theranostics 10 (2020) 2453-2462.
doi: 10.7150/thno.42981
X. Wan, H. Zhong, W. Pan, et al., Angew. Chem. 131 (2019) 14272-14277.
doi: 10.1002/ange.201907388
D.E. Goll, V.F. Thompson, H. Li, et al., Physiol. Rev. 83 (2003) 731-801.
doi: 10.1152/physrev.00029.2002
X. Liu, T. Van Vleet, R.G. Schnellmann, Annu. Rev. Pharmacol. Toxicol. 44 (2004) 349-370.
doi: 10.1146/annurev.pharmtox.44.101802.121804
X. Zhou, W.J. Sun, W.M. Wang, et al., Anti-cancer Drug 24 (2013) 920-927.
doi: 10.1097/CAD.0b013e328364a109
C.L. Hartwig, A.S. Rosenthal, J. D'Angelo, et al., Biochem. Pharmacol. 77 (2009) 322-336.
doi: 10.1016/j.bcp.2008.10.015
Y. Liu, W. Zhen, L. Jin, et al., ACS Nano 12 (2018) 4886-4893.
doi: 10.1021/acsnano.8b01893
Z. Zhao, W. Wang, C. Li, et al., Adv. Funct. Mater. 29 (2019) 1905013.
doi: 10.1002/adfm.201905013
M. Chang, M. Wang, M. Wang, et al., Adv. Mater. 31 (2019) 1905271.
doi: 10.1002/adma.201905271
W. Qiu, M. Liang, Y. Gao, et al., Theranostics 11 (2021) 9652-9666.
doi: 10.7150/thno.64354
Y. Liu, Q. Jia, Q. Guo, et al., Biomaterials 180 (2018) 104-116.
doi: 10.1016/j.biomaterials.2018.07.025
W.L. Wang, Z. Guo, Y. Lu, et al., ACS Appl. Mater. Interfaces 11 (2019) 17294-17305.
doi: 10.1021/acsami.9b04531
R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, CA-Cancer J. Clin. 71 (2021) 7-33.
doi: 10.3322/caac.21654
S.V. Torti, F.M. Torti, Nat. Rev. Cancer 13 (2013) 342.
doi: 10.1038/nrc3495
J.E. Visvader, G.J. Lindeman, Nat. Rev. Cancer 8 (2008) 755.
doi: 10.1038/nrc2499
Zhen Hu , Hai Ping Xing , Zhou Zhu , Wei Wang , Wen Chao Guan . Synthesis of cystine C60 derivative and its protective effects on hydrogen peroxide-induced apoptosis in PC12 cells. Chinese Chemical Letters, 2007, 18(2): 145-148. doi: 10.1016/j.cclet.2006.12.023
Lei Zhu , Sun-Bok Jo , Shu Ye , Kefayat Ullah , Won-Chun Oh . Rhodamine B degradation and reactive oxygen species generation by a ZnSe-graphene/TiO2 sonocatalyst. Chinese Journal of Catalysis, 2014, 35(11): 1825-1832. doi: 10.1016/S1872-2067(14)60158-3
Mengmeng Hou , Yuanxin Zhong , Lei Zhang , Zhigang Xu , Yuejun Kang , Peng Xue . Polydopamine (PDA)-activated cobalt sulfide nanospheres responsive to tumor microenvironment (TME) for chemotherapeutic-enhanced photothermal therapy. Chinese Chemical Letters, 2021, 32(3): 1055-1060. doi: 10.1016/j.cclet.2020.08.009
Yonghui Qiao , Zhihao Wei , Tingting Qin , Rufeng Song , Zhiqiang Yu , Qi Yuan , Juan Du , Qingbing Zeng , Lanlan Zong , Shaofeng Duan , Xiaohui Pu . Combined nanosuspensions from two natural active ingredients for cancer therapy with reduced side effects. Chinese Chemical Letters, 2021, 32(9): 2877-2881. doi: 10.1016/j.cclet.2021.03.049
. A mini-review and perspective on ferroptosis-inducing strategies in cancer therapy. Chinese Chemical Letters, 2019, 30(4): 847-852. doi: 10.1016/j.cclet.2019.03.025
Yang Limin , Gao Peng , Huang Yuanlei , Lu Xiao , Chang Qian , Pan Wei , Li Na , Tang Bo . Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer. Chinese Chemical Letters, 2019, 30(6): 1293-1296. doi: 10.1016/j.cclet.2019.03.032
Yue-Xia Zhang , Zhen-Hua Yang , Quan-Xi Zhang , Rui-Jin Li , Hong Geng , Chuan Dong . Chemical compositions and effects on chemiluminescence of AMs in vitro of chalk dusts. Chinese Chemical Letters, 2015, 26(1): 157-159. doi: 10.1016/j.cclet.2014.08.004
Wang Yueqi , Li Changjian , Du Libo , Liu Yang . A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chinese Chemical Letters, 2020, 31(1): 275-280. doi: 10.1016/j.cclet.2019.03.040
Chan Wang , Bangqi Wei , Han Zhu , Yimin He , Guoxia Ran , Qijun Song . Engineering FeS2 nanoparticles on tubular g-C3N4 for photo-Fenton treatment of paint wastewater. Chinese Chemical Letters, 2022, 33(6): 3073-3077. doi: 10.1016/j.cclet.2021.09.051
Lei Zhou , Chang Du , Rong Zhang , Changming Dong . Stimuli-responsive dual drugs-conjugated polydopamine nanoparticles for the combination photothermal-cocktail chemotherapy. Chinese Chemical Letters, 2021, 32(1): 561-564. doi: 10.1016/j.cclet.2020.02.043
Yujie Dai , Yiming Ding , Linlin Li . Nanozymes for regulation of reactive oxygen species and disease therapy. Chinese Chemical Letters, 2021, 32(9): 2715-2728. doi: 10.1016/j.cclet.2021.03.036
Liao Jiazhen , Li Kanglu , Ma Hao , Dong Fan , Zeng Xiaolan , Sun Yanjuan . Oxygen vacancies on the BiOCl surface promoted photocatalytic complete NO oxidation via superoxide radicals. Chinese Chemical Letters, 2020, 31(10): 2737-2741. doi: 10.1016/j.cclet.2020.03.081
Yang Siqi , Zhou Linzhu , Su Yue , Zhang Rong , Dong Chang-Ming . One-pot photoreduction to prepare NIR-absorbing plasmonic gold nanoparticles tethered by amphiphilic polypeptide copolymer for synergistic photothermal-chemotherapy. Chinese Chemical Letters, 2019, 30(1): 187-191. doi: 10.1016/j.cclet.2018.02.015
Chen Hu , Cheng Hongwei , Wu Wenying , Li Dengfeng , Mao Jingsong , Chu Chengchao , Liu Gang . The blooming intersection of transcatheter hepatic artery chemoembolization and nanomedicine. Chinese Chemical Letters, 2020, 31(6): 1375-1381. doi: 10.1016/j.cclet.2020.03.024
Yu Qin , Qing Guo , Shengjie Wu , Chenlu Huang , Zhiming Zhang , Li Zhang , Linhua Zhang , Dunwan Zhu . LHRH/TAT dual peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to overcome hepatocellular carcinoma. Chinese Chemical Letters, 2020, 31(12): 3121-3126. doi: 10.1016/j.cclet.2020.06.023
Lvqin Fu , Xianbin Ma , Yuantong Liu , Zhigang Xu , Zhijun Sun . Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death. Chinese Chemical Letters, 2022, 33(4): 1718-1728. doi: 10.1016/j.cclet.2021.10.074
Yuan Chaowei , Cui Wen , Sun Yanjuan , Wang Jiadong , Chen Ruimin , Zhang Jin , Zhang Yuxin , Dong Fan . Inhibition of the toxic byproduct during photocatalytic NO oxidation via La doping in ZnO. Chinese Chemical Letters, 2020, 31(3): 751-754. doi: 10.1016/j.cclet.2019.09.033
Shen Lijun , Zhou Tianjiao , Fan Yatong , Chang Xin , Wang Yi , Sun Jianguo , Xing Lei , Jiang Hulin . Recent progress in tumor photodynamic immunotherapy. Chinese Chemical Letters, 2020, 31(7): 1709-1716. doi: 10.1016/j.cclet.2020.02.007
Yanhui Zhang , Hao Teng , Ying Gao , Muhammad Wasim Afzal , Jingye Tian , Xi Chen , Haoyang Tang , Tony D. James , Yuan Guo . A general strategy for selective detection of hypochlorous acid based on triazolopyridine formation. Chinese Chemical Letters, 2020, 31(11): 2917-2920. doi: 10.1016/j.cclet.2020.03.020
Ruohan Zhang , Maolian Chen , Zhaokun Xiong , Yong Guo , Bo Lai . Highly efficient degradation of emerging contaminants by magnetic CuO@FexOy derived from natural mackinawite (FeS) in the presence of peroxymonosulfate. Chinese Chemical Letters, 2022, 33(2): 948-952. doi: 10.1016/j.cclet.2021.07.029