Construction of a low-valent thiolate-bridged dicobalt platform and its reactivity toward hydrogen activation and evolution
-
* Corresponding author.
E-mail address: yangdw@dlut.edu.cn (D. Yang).
Citation:
Tao Mei, Dawei Yang, Linan Su, Baomin Wang, Jingping Qu. Construction of a low-valent thiolate-bridged dicobalt platform and its reactivity toward hydrogen activation and evolution[J]. Chinese Chemical Letters,
;2022, 33(5): 2477-2480.
doi:
10.1016/j.cclet.2021.11.014
K. Gao, N. Yoshikai, Acc. Chem. Res.47 (2014) 1208–1219.
doi: 10.1021/ar400270x
T.J. Hadlington, M. Driess, C. Jones, Chem. Soc. Rev. 47 (2018) 4176–4197.
doi: 10.1039/C7CS00649G
S. Yoshioka, S. Saito, Chem. Commun. 54 (2018) 13319–13330.
doi: 10.1039/c8cc06543h
C. -. S. Cao, Y. Shi, H. Xu, B. Zhao, Coord. Chem. Rev. 365 (2018) 122–144.
doi: 10.1016/j.ccr.2018.03.017
Y. Liu, J. Cheng, L. Deng, Acc. Chem. Res. 53 (2020) 244–254.
doi: 10.1021/acs.accounts.9b00492
J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107 (2007) 4273–4303.
doi: 10.1021/cr050195z
W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Chem. Rev. 114 (2014) 4081–4148.
doi: 10.1021/cr4005814
J.L. Dempsey, B.S. Brunschwig, J.R. Winkler, H.B. Gray, Acc. Chem. Res. 42 (2009) 1995–2004.
doi: 10.1021/ar900253e
N. Queyriaux, R.T. Jane, J. Massin, V. Artero, M. Chavarot-Kerlidou, Coord. Chem. Rev. 304-305 (2015) 3–19.
doi: 10.1016/j.ccr.2015.03.014
D.Z. Zee, T. Chantarojsiri, J.R. Long, C.J. Chang, Acc. Chem. Res. 48 (2015) 2027–2036.
doi: 10.1021/acs.accounts.5b00082
N.K. Szymczak, L.A. Berben, J.C. Peters, Chem. Commun. (2009) 6729–6731.
doi: 10.1039/b913946j
S. Mandal, S. Shikano, Y. Yamada, et al., J. Am. Chem. Soc. 135 (2013) 15294–15297.
doi: 10.1021/ja408080z
S. Kal, A.S. Filatov, P.H. Dinolfo, Inorg. Chem. 53 (2014) 7137–7145.
doi: 10.1021/ic500121f
C. Di Giovanni, C. Gimbert-Surinach, M. Nippe, et al., Chem. Eur. J. 22 (2016) 361–369.
doi: 10.1002/chem.201503567
P. Tong, W. Xie, D. Yang, et al., Dalton Trans. 45 (2016) 18559–18565.
doi: 10.1039/C6DT03275C
K.K. Kpogo, S. Mazumder, D. Wang, et al., Chem. -Eur. J. 23 (2017) 9272–9279.
doi: 10.1002/chem.201701982
Y. Zhang, P. Tong, D. Yang, et al., Chem. Commun. 53 (2017) 9854–9857.
doi: 10.1039/C7CC05092E
C. Wang, J. Li, D. Yang, et al., Eur. J. Inorg. Chem. (2020) 2757–2764.
doi: 10.1002/ejic.202000369
A.D. Wilson, R.H. Newell, M.J. McNevin, et al., J. Am. Chem. Soc. 128 (2006) 358–366.
doi: 10.1021/ja056442y
Y. Maenaka, T. Suenobu, S. Fukuzumi, J. Am. Chem. Soc. 134 (2012) 367–374.
doi: 10.1021/ja207785f
A.Z. Haddad, D. Kumar, K. Ouch Sampson, et al., J. Am. Chem. Soc. 137 (2015) 9238–9241.
doi: 10.1021/jacs.5b05561
Y. Chen, Y. Zhou, P. Chen, et al., J. Am. Chem. Soc. 130 (2008) 15250–15251.
doi: 10.1021/ja805025w
Y. Chen, L. Liu, Y. Peng, et al., J. Am. Chem. Soc. 133 (2011) 1147–1149.
doi: 10.1021/ja105948r
Y. Li, Y. Li, B. Wang, et al., Nature Chem. 5 (2013) 320–326.
doi: 10.1038/nchem.1594
P. Tong, D. Yang, Y. Li, B. Wang, J. Qu, Organometallics 34 (2015) 3571–3576.
doi: 10.1021/acs.organomet.5b00387
X. Zhao, D. Yang, Y. Zhang, B. Wang, J. Qu, Chem. Commun. 54 (2018) 11112–11115.
doi: 10.1039/c8cc05738a
Y. Zhang, D. Yang, Y. Li, et al., Catal. Sci. Technol. 9 (2019) 6492–6502.
doi: 10.1039/c9cy01667h
N. Wei, D. Yang, J. Zhao, et al., Organometallics 40 (2021) 1434–1442.
doi: 10.1021/acs.organomet.1c00031
H. Wu, J. Li, D. Yang, et al., Inorg. Chem. Front. 6 (2019) 2185–2193.
doi: 10.1039/c9qi00423h
J. Li, D. Yang, P. Tong, et al., Inorg. Chem. 59 (2020) 8203–8212.
doi: 10.1021/acs.inorgchem.0c00542
J.J. Schneider, U. Specht, Z. Naturforsch. 50b (1995) 684–686.
doi: 10.1515/znb-1995-0436
S. Venkataramani, U. Jana, M. Dommaschk, et al., Science 331 (2011) 445–448.
doi: 10.1126/science.1201180
N.A. Arnet, T.R. Dugan, F.S. Menges, et al., J. Am. Chem. Soc. 137 (2015) 13220–13223.
doi: 10.1021/jacs.5b06841
D. Yang, Y. Li, B. Wang, et al., Inorg. Chem. 54 (2015) 10243–10249.
doi: 10.1021/acs.inorgchem.5b01508
J.J. Warren, T.A. Tronic, J.M. Mayer, Chem. Rev. 110 (2010) 6961–7001.
doi: 10.1021/cr100085k
I.M. Riddlestone, N.A. Rajabi, J.P. Lowe, et al., J. Am. Chem. Soc. 138 (2016) 11081–11084.
doi: 10.1021/jacs.6b05243
P.I. Georgakaki, L.M. Thomson, E.J. Lyon, M.B. Hal, M.Y. Darensbourg, Coord. Chem. Rev. 238-239 (2003) 255–266.
doi: 10.1016/S0010-8545(02)00326-0
J.F. Capon, F. Gloaguen, F.Y. Pétillon, P. Schollhammer, J. Talarmin, Coord. Chem. Rev. 253 (2009) 1476–1494.
doi: 10.1016/j.ccr.2008.10.020
D. Schilter, J.M. Camara, M.T. Huynh, S. Hammes-Schiffer, T.B. Rauchfuss, Chem. Rev. 116 (2016) 8693–8749.
doi: 10.1021/acs.chemrev.6b00180
S. Ogo, Coord. Chem. Rev. 334 (2017) 43–53.
doi: 10.1016/j.ccr.2016.07.001
D.J. Elliot, D.G. Holah, A.N. Hughes, H.A. Mirza, E. Zawada, J. Chem. Soc., Chem. Commun. (1990) 32–33.
T.E. Bitterwolf, J. Organomet. Chem. 363 (1989) 189–195.
doi: 10.1016/0022-328X(89)88053-2
C. Tejel, M.A. Ciriano, M. Millaruelo, et al., Inorg. Chem. 42 (2003) 4750–4758.
doi: 10.1021/ic034225x
G.A.N. Felton, R.S. Glass, D.L. Lichtenberger, D.H. Evans, Inorg. Chem. 45 (2006) 9181–9184.
doi: 10.1021/ic060984e
B.E. Barton, T.B. Rauchfuss, J. Am. Chem. Soc. 132 (2010) 14877–14885.
doi: 10.1021/ja105312p
M.E. Carroll, B.E. Barton, T.B. Rauchfuss, P.J. Carroll, J. Am. Chem. Soc. 134 (2012) 18843–18852.
doi: 10.1021/ja309216v
M. Wang, L. Chen, L. Sun, Energy Environ. Sci. 5 (2012) 6763–6778.
doi: 10.1039/c2ee03309g
M.E. Ahmed, S. Dey, M.Y. Darensbourg, A. Dey, J. Am. Chem. Soc. 140 (2018) 12457–12468.
doi: 10.1021/jacs.8b05983
P. Sun, D. Yang, Y. Li, B. Wang, J. Qu, Dalton Trans. 49 (2020) 2151–2158.
doi: 10.1039/c9dt04493k
V. Artero, M. Fontecave, Chem. Soc. Rev. 4 (2013) 2338–2356.
M. Fang, M.H. Engelhard, Z. Zhu, M.L. Helm, J.A.S. Roberts, ACS Catal. 4 (2013) 90–98.
Ali Niazi , Ateesa Yazdanipour . Simultaneous spectrophotometric determination of cobalt,copper and nickel using 1-(2-thiazolylazo)-2-naphthol by chemometrics methods. Chinese Chemical Letters, 2008, 19(7): 860-864. doi: 10.1016/j.cclet.2008.04.047
Tao Zheng , Min Ren , Song-Song Bao , Li-Min Zheng . M2(pbtcH)(phen)2(H2O)2 [M(II)=Co, Ni]:Mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures. Chinese Chemical Letters, 2014, 25(6): 835-838. doi: 10.1016/j.cclet.2014.05.005
Wen-Jia Cai , Lin-Ping Qian , Bin Yue , Xue-Ying Chen , He-Yong He . Reforming of CH4 with CO2 over Co/Mγ-Al oxide catalyst. Chinese Chemical Letters, 2013, 24(9): 777-779.
Jahan-Bakhsh Raoof , Sayed Reza Hosseini , Seyedeh Zeinab Mousavi-Sani . Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates. Chinese Journal of Catalysis, 2015, 36(2): 216-220. doi: 10.1016/S1872-2067(14)60207-2
Dong Jin Qian , Ai Rong Liu , Chikashi Nakamura , Stephan Olav Wenk , Jun Miyake . Photoinduced hydrogen evolution in an artificial system containing photosystem I,hydrogenase,methyl viologen and mercaptoacetic acid. Chinese Chemical Letters, 2008, 19(5): 607-610. doi: 10.1016/j.cclet.2008.03.015
Mingjun Ma , Haiqing Wang , Hong Liu . Steering spatially separated dual sites on nano-TiO2 through SMSI and lattice matching for robust photocatalytic hydrogen evolution. Chinese Chemical Letters, 2021, 32(11): 3613-3618. doi: 10.1016/j.cclet.2021.04.012
Jie Wang , Wu Yang , Jie Ren , Miao Guo , Xiao Dong Chen , Wen Bin Wang , Jin Zhang Gao . Trace determination of cobalt ion by using malic acid-malonic acid double substrate oscillating chemical system. Chinese Chemical Letters, 2008, 19(9): 1103-1107. doi: 10.1016/j.cclet.2008.06.012
Ezzat Rafiee , Nasibeh Rahpeyma . Selective oxidation of sulfurs and oxidation desulfurization of model oil by 12-tungstophosphoric acid on cobalt-ferrite nanoparticles as magnetically recoverable catalyst. Chinese Journal of Catalysis, 2015, 36(8): 1342-1349. doi: 10.1016/S1872-2067(15)60862-2
Min GU , Fang Zu YANG , Ling HUANG , Shi Bing YAO , Shao Min ZHOU . Identification of Different Cobalt Nucleation on Glassy Carbon. Chinese Chemical Letters, 2004, 15(8): 981-984.
Men Yana , Su Jun , Wang Xiangli , Cai Ping , Cheng Gongzhen , Luo Wei . NiPt nanoparticles supported on CeO2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine. Chinese Chemical Letters, 2019, 30(3): 634-637. doi: 10.1016/j.cclet.2018.11.010
Sanjay Srivastava , Pravakar Mohanty , Jigisha K. Parikh , Ajay K. Dalai , S. S. Amritphale , Anup K. Khare . Cr-free Co-Cu/SBA-15 catalysts for hydrogenation of biomass-derived α-, β-unsaturated aldehyde to alcohol. Chinese Journal of Catalysis, 2015, 36(7): 933-942. doi: 10.1016/S1872-2067(15)60870-1
Shuvo Jit Datta , Kyung Byung Yoon . Co-ETS-10 and Co-AM-6 as active catalysts for the oxidation of styrene to styrene oxide and benzaldehyde using molecular oxygen. Chinese Journal of Catalysis, 2015, 36(6): 897-905. doi: 10.1016/S1872-2067(15)60864-6
Yuan-Ye Jiang , Hai-Zhu Yu , Jing Shi . Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes. Chinese Chemical Letters, 2015, 26(1): 58-62. doi: 10.1016/j.cclet.2014.10.021
Pan Jinbo , Shen Sheng , Zhou Wei , Tang Jie , Ding Hongzhi , Wang Jinbo , Chen Lang , Au Chak-Tong , Yin Shuang-Feng . Recent Progress in Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2020, 36(3): 1905068-0. doi: 10.3866/PKU.WHXB201905068
Song Dengmeng , Gao Xuyun , Li Bo , Li Jun , Sun Xuzhuo , Li Chengbo , Zhao Jiale , Chen Lin , Wang Ning . Synthesis, structure and electrocatalytic H2-evoluting activity of a dinickel model complex related to the active site of [NiFe]-hydrogenases. Chinese Chemical Letters, 2020, 31(9): 2483-2486. doi: 10.1016/j.cclet.2020.01.033
Li Weidong , Liu Yuan , Wang Boyang , Song Haoqiang , Liu Zhongyi , Lu Siyu , Yang Bai . Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chinese Chemical Letters, 2019, 30(12): 2323-2327. doi: 10.1016/j.cclet.2019.06.040
Wang Yixuan , He Fengting , Chen Lin , Shang Jie , Wang Jiajia , Shuaijun Wang , Song Huimin , Zhang Jinqiang , Zhao Chaocheng , Wang Shaobin , Sun Hongqi . Acidification and bubble template derived porous g-C3N4 for efficient photodegradation and hydrogen evolution. Chinese Chemical Letters, 2020, 31(10): 2668-2672. doi: 10.1016/j.cclet.2020.08.003
Zhiliang Jin , Yanbing Li , Xuqiang Hao . Ni, Co-Based Selenide Anchored g-C3N4 for Boosting Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2021, 37(10): 1912033-0. doi: 10.3866/PKU.WHXB201912033
Chunmei Li , Daqiang Zhu , Shasha Cheng , Yan Zuo , Yun Wang , Changchang Ma , Hongjun Dong . Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chinese Chemical Letters, 2022, 33(3): 1141-1153. doi: 10.1016/j.cclet.2021.07.057
Zhou Dan , Jiang Bei , Yang Rui , Hou Xiandeng , Zheng Chengbin . One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution. Chinese Chemical Letters, 2020, 31(6): 1540-1544. doi: 10.1016/j.cclet.2019.11.014