Matryoshka-type carbon-stabilized hollow Si spheres as an advanced anode material for lithium-ion batteries
-
* Corresponding authors.
E-mail addresses: pbgao@sdut.edu.cn (P. Gao), zhoujin@sdut.edu.cn (J. Zhou).
Citation:
Huimin Wu, Peibo Gao, Jinglin Mu, Zhichao Miao, Pengfei Zhou, Tong Zhou, Jin Zhou. Matryoshka-type carbon-stabilized hollow Si spheres as an advanced anode material for lithium-ion batteries[J]. Chinese Chemical Letters,
;2022, 33(6): 3236-3240.
doi:
10.1016/j.cclet.2021.10.039
J.R. Szczech, S. Jin, Energy Environ. Sci.4 (2011) 56–72.
doi: 10.1039/C0EE00281J
H. Wu, Y. Cui, Nano Today 7 (2012) 414–429.
doi: 10.1016/j.nantod.2012.08.004
N. Liu, K. Huo, M.T. McDowell, J. Zhao, Y. Cui, Sci. Rep. 3 (2013) 1919.
doi: 10.1038/srep01919
X. Su, Q. Wu, J. Li, et al., Adv. Energy Mater. 4 (2014) 1300882.
doi: 10.1002/aenm.201300882
S. Chen, L. Shen, P.A. van Aken, J. Maier, Y. Yu, Adv. Mater. 29 (2017) 1605650.
doi: 10.1002/adma.201605650
S. Heon-Cheol, C.J. A, G.J. L, L.M. Lin, J. Power Sources 139 (2005) 314–320.
doi: 10.1016/j.jpowsour.2004.06.073
B. Liu, X. Wang, H. Chen, et al., Sci. Rep. 3 (2013) 1622.
doi: 10.1038/srep01622
M.Y. Ge, J.P. Rong, X. Fang, C.W. Zhou, Nano Lett. 12 (2012) 2318–2323.
doi: 10.1021/nl300206e
Y. Wang, T. Wang, P. Da, et al., Adv. Mater. 25 (2013) 5177–5195.
doi: 10.1002/adma.201301943
H. Lin, W. Weng, J. Ren, et al., Adv. Mater. 26 (2014) 1217–1222.
doi: 10.1002/adma.201304319
W.S. Kim, Y. Hwa, J.H. Shin, et al., Nanoscale 6 (2014) 4297–4302.
doi: 10.1039/c3nr05354g
J. Ryu, D. Hong, S. Choi, S. Park, ACS Nano 10 (2016) 2843–2851.
doi: 10.1021/acsnano.5b07977
Z.H. Bao, M.R. Weatherspoon, S. Shian, et al., Nature 446 (2007) 172–175.
doi: 10.1038/nature05570
M.Y. Ge, J.P. Rong, X. Fang, et al., Nano Res. 6 (2013) 174–181.
doi: 10.1007/s12274-013-0293-y
Z. Zhou, L. Pan, Y. Liu, X. Zhu, X. Xie, Chin. Chem. Lett. 30 (2019) 610–617.
doi: 10.1016/j.cclet.2018.08.018
D. Vrankovic, M. Graczyk-Zajac, C. Kalcher, et al., ACS Nano 11 (2017) 11409–11416.
doi: 10.1021/acsnano.7b06031
J. Hu, Q. Wang, L. Fu, et al., ACS Appl. Mater. Interfaces 12 (2020) 48467–48475.
doi: 10.1021/acsami.0c10418
S. Geng, T. Zhou, M. Jia, et al., Energy Environ. Sci. 14 (2021) 3184–3193.
doi: 10.1039/d1ee00193k
N. Liu, H. Wu, M.T. McDowell, et al., Nano Lett. 12 (2012) 3315–3321.
doi: 10.1021/nl3014814
P. Gao, X. Huang, Y. Zhao, et al., ACS Nano 12 (2018) 11481–11490.
doi: 10.1021/acsnano.8b06528
N. Lin, Y. Han, J. Zhou, et al., Energy Environ. Sci. 8 (2015) 3187–3191.
doi: 10.1039/C5EE02487K
W. Weng, C. Zeng, W. Xiao, ACS Appl. Mater. Interfaces 11 (2019) 9156–9163.
doi: 10.1021/acsami.9b00265
W. Xiao, D. Wang, Chem. Soc. Rev. 43 (2014) 3215–3228.
doi: 10.1039/c3cs60327j
W. Luo, X. Wang, C. Meyers, et al., Sci. Rep. 3 (2013) 2222.
doi: 10.1038/srep02222
L. Wang, N. Lin, J. Zhou, Y. Zhu, Y. Qian, Chem. Commun. 51 (2015) 2345–2348.
doi: 10.1039/C4CC09233C
L. Lin, X. Xu, C. Chu, M.K. Majeed, J. Yang, Angew. Chem. Int. Ed. 55 (2016) 14063–14066.
doi: 10.1002/anie.201608146
B. Wang, X. Li, X. Zhang, et al., Adv. Mater. 25 (2013) 3560–3565.
doi: 10.1002/adma.201300844
N.H. Hai, I. Grigoriants, A. Gedanken, J. Phys. Chem. C 113 (2009) 10521–10526.
doi: 10.1021/jp809432t
P. Gao, H. Tang, A. Xing, Z. Bao, Electrochim. Acta 228 (2017) 545–552.
doi: 10.1016/j.electacta.2017.01.119
L. Zhenda, L. Nian, L. Hyun-Wook, et al., ACS Nano 9 (2015) 2540–2547.
doi: 10.1021/nn505410q
B. Gao, K. Kakimoto, J. Cryst. Growth 396 (2014) 7–13.
doi: 10.1016/j.jcrysgro.2014.03.034
Y. An, Y. Tian, C. Wei, et al., ACS Nano 13 (2019) 13690–13701.
doi: 10.1021/acsnano.9b06653
L. Ding, J.P. Raskin, G. Lumbeeck, D. Schryvers, H. Idrissi, Mater. Charact. 161 (2020) 110174.
doi: 10.1016/j.matchar.2020.110174
H.F. Lopez, H. Mendoza, ISRN Nanomater. 2013 (2013) 208614.
A. Magasinski, P. Dixon, B. Hertzberg, et al., Nat. Mater. 9 (2010) 353–358.
doi: 10.1038/nmat2725
X. Huang, X. Guo, Y. Ding, et al., Chin. Chem. Lett. 32 (2021) 598–603.
doi: 10.1016/j.cclet.2020.11.041
P. Gao, S. Xu, Z. Chen, et al., ACS Appl. Mater. Interfaces 10 (2018) 3938–3947.
doi: 10.1021/acsami.7b16174
W. Yang, W. Yang, A. Song, et al., J. Power Sources 348 (2017) 175–182.
doi: 10.1504/IJCSM.2017.083756
W. -. S. Kim, J. Choi, S. -. H. Hong, Nano Res. 9 (2016) 2174–2181.
doi: 10.1007/s12274-016-1106-x
X.H. Liu, L. Zhong, S. Huang, et al., ACS Nano 6 (2012) 1522–1531.
doi: 10.1021/nn204476h
F. Shi, Z. Song, P.N. Ross, et al., Nat. Commun. 7 (2016) 11886.
doi: 10.1038/ncomms11886
R. Fang, S. Zhao, P. Hou, et al., Adv. Mater. 28 (2016) 3374–3382.
doi: 10.1002/adma.201506014
F. Dai, J.T. Zai, R. Yi, et al., Nat. Commun. 5 (2014) 3605.
doi: 10.1038/ncomms4605
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Yanxue Wu , Xijun Xu , Shanshan Shi , Fangkun Li , Shaomin Ji , Jingwei Zhao , Jun Liu , Yanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Peining Zhu , Xi Guo , Qinqin Yu , Zuyong Wang , Xiangxiao Lei , Zhiwei Zhu , Juan Du , Xiaojia Zhang , Yuan-Li Ding . Design strategies of Si-based anode for solid-state batteries. Chinese Chemical Letters, 2025, 36(9): 111383-. doi: 10.1016/j.cclet.2025.111383
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Fengjun Deng , Tingyu Zhao , Xiaochen Zhang , Kaiyong Feng , Ze Liu , Youlin Xiang , Yingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Aoran LIU , Rui LI , Zongyao WANG , Penghui SHANG , Jiawei WAN , Dan WANG . Hollow multi-shelled structure materials for catalytic applications. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2039-2053. doi: 10.11862/CJIC.20250036
Xue Xiao , Jiachun Li , Xiangtong Meng , Jieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046