Ultrasensitive determination of mercury by ICP-OES coupled with a vapor generation approach based on solution cathode glow discharge
-
* Corresponding author.
E-mail address: wangzheng@mail.sic.ac.cn(Z. Wang).
Citation:
Zhaoqing Cai, Huijun Zou, Yirui Chen, Zheng Wang. Ultrasensitive determination of mercury by ICP-OES coupled with a vapor generation approach based on solution cathode glow discharge[J]. Chinese Chemical Letters,
;2022, 33(5): 2692-2696.
doi:
10.1016/j.cclet.2021.09.107
K.M. Rice, E.M. Walker Jr., M. Wu, C. Gillette, E.R. Blough, J. Prev. Med. Public. Health.47 (2014) 74–83.
doi: 10.3961/jpmph.2014.47.2.74
Y.Z. Li, Q.Q. Zhou, B. Ren, et al., Trends and Health Risks of Dissolved Heavy Metal Pollution in Global River and Lake Water from 1970 to 2017, in: P. DeVoogt (Eds. ), Reviews of Environmental Contamination and Toxicology, Springer Nature Switzerland, Basel, 2020, Vol. 251, pp. 1-24.
J. Borkowska-Burnecka, A. Lesniewicz, W. Zymicki, Spectrochim. Acta Part B61 (2006) 579–587.
doi: 10.1016/j.sab.2006.04.005
M.M.L. Guerrero, E.V. Alonso, J.M.C. Pavon, M.T.S. Cordero, A.G. de Torres, J. Anal. At. Spectrom. 31 (2016) 975–984.
doi: 10.1039/C5JA00471C
M. Garcia, M. Angel Aguirre, A. Canals, Anal. Bioanal. Chem. 409 (2017) 5481–5490.
doi: 10.1007/s00216-017-0484-6
J.C. Garcia-Mesa, P.M. Leal, M.M.L. Guerrero, E.I.V. Alonso, Microchem. J. 150 (2019) 104141.
doi: 10.1016/j.microc.2019.104141
M. Yuan, X. Peng, F. Ge, et al., Chin. Chem. Lett. 31 (2020) 2814–2818.
doi: 10.1016/j.cclet.2020.03.055
P. Pohl, P. Jamroz, M. Welna, A. Szymczycha-Madeja, K. Greda, TrAC Trends Anal. Chem. 59 (2014) 144–155.
doi: 10.1016/j.trac.2014.04.010
T. Chen, Y. Lin, H. Li, et al., Chin. Chem. Lett. 31 (2020) 2678–2682.
doi: 10.1016/j.cclet.2020.06.005
X. Liu, Z.L. Zhu, P.J. Xing, H.T. Zheng, S.H. Hu, Spectrochim. Acta Part B167 (2020) 105822.
doi: 10.1016/j.sab.2020.105822
Y.H. He, X.D. Hou, C.B. Zheng, R.E. Sturgeon, Anal. Bioanal. Chem. 388 (2007) 769–774.
doi: 10.1007/s00216-006-1044-7
R.E. Sturgeon, P. Grinberg, J. Anal. At. Spectrom. 27 (2012) 222–231.
doi: 10.1039/C2JA10249H
Z.R. Zou, J. Hu, F.J. Xu, X.D. Hou, X.M. Jiang, TrAC Trends Anal. Chem. 114 (2019) 242–250.
doi: 10.1016/j.trac.2019.03.012
Y.L. Wang, L.L. Lin, J.X. Liu, et al., Analyst141 (2016) 1530–1536.
doi: 10.1039/C5AN02489G
R.E. Sturgeon, Anal. Chem. 87 (2015) 3072–3079.
doi: 10.1021/ac504747a
Z.F. Liu, Z. Xing, Z.Y. Li, et al., J. Anal. At. Spectrom. 32 (2017) 678–685.
doi: 10.1039/C6JA00421K
Y.X. Li, Z.L. Zhu, H.T. Zheng, L.L. Jin, S.H. Hu, J. Anal. At. Spectrom. 31 (2016) 383–389.
doi: 10.1039/C5JA00300H
Q. Wu, Z. Zhu, Z. Liu, et al., J. Anal. At. Spectrom. 27 (2012) 496–500.
doi: 10.1039/c2ja10329j
Z.F. Liu, Z.L. Zhu, Q.J. Wu, S.H. Hu, H.T. Zheng, Analyst136 (2011) 4539–4544.
doi: 10.1039/c1an15332c
X. Wu, W.L. Yang, M.G. Liu, X.D. Hou, C.B. Zheng, J. Anal. At. Spectrom. 26 (2011) 1204–1209.
doi: 10.1039/c1ja10016e
P. Pohl, K. Greda, A. Dzimitrowicz, et al., TrAC Trends Anal. Chem. 113 (2019) 234–245.
doi: 10.1016/j.trac.2019.02.015
Q. He, Z.L. Zhu, S.H. Hu, Rev. Anal. Chem. 33 (2014) 111–121.
A.Q. Leng, Y.F. Tian, M.X. Wang, et al., Zheng, Chin. Chem. Lett. 28 (2017) 189–196.
doi: 10.1016/j.cclet.2016.06.056
Z.A. Li, Q. Tan, X. Hou, K. Xu, C. Zheng, Anal. Chem. 86 (2014) 12093–12099.
doi: 10.1021/ac502911p
Q. Chen, Y. Lin, Y.F. Tian, et al., Anal. Chem. 89 (2017) 2093–2100.
doi: 10.1021/acs.analchem.6b04753
X. Liu, Z.F. Liu, Z.L. Zhu, et al., Anal. Chem. 89 (2017) 3739–3746.
doi: 10.1021/acs.analchem.7b00126
K. Greda, M. Gorska, M. Welna, P. Jamroz, P. Pohl, Talanta 199 (2019) 107–115.
doi: 10.1016/j.talanta.2019.02.058
T. Cserfalvi, P. Mezei, J. Anal. At. Spectrom. 20 (2005) 939–944.
doi: 10.1039/b504610f
Z. Zhu, C. Huang, Q. He, et al., Talanta 106 (2013) 133–136.
doi: 10.1016/j.talanta.2012.12.010
P.C. Zheng, H.D. Liu, J.M. Wang, et al., J. Anal. At. Spectrom. 30 (2015) 867–874.
doi: 10.1039/C4JA00350K
Z. Zhu, Q. He, Q. Shuai, H. Zheng, S. Hu, J. Anal. At. Spectrom. 25 (2010) 1390–1394.
doi: 10.1039/b927298d
Q. He, Z. Zhu, S. Hu, L. Jin, J. Chromatogr. A1218 (2011) 4462–4467.
doi: 10.1016/j.chroma.2011.05.034
Z. Zhu, G.C.Y. Chan, S.J. Ray, X. Zhang, G.M. Hieftje, Anal. Chem. 80 (2008) 7043–7050.
doi: 10.1021/ac8011126
K. Swiderski, M. Welna, K. Greda, P. Pohl, P. Jamroz, Anal. Bioanal. Chem. 412 (2020) 4211–4219.
doi: 10.1007/s00216-020-02685-7
S. Samukawa, M. Hori, S. Rauf, et al., J. Phys. d-Appl. Phys. 45 (2012) 253001.
doi: 10.1088/0022-3727/45/25/253001
P. Rumbach, M. Witzke, R.M. Sankaran, D.B. Go, J. Am. Chem. Soc. 135 (2013) 16264–16267.
doi: 10.1021/ja407149y
R.K. Marcus, B.T. Manard, C.D. Quarles, J. Anal. At. Spectrom. 32 (2017) 704–716.
doi: 10.1039/C7JA00008A
I. Novotny, J.C. Farinas, J.L. Wan, E. Poussel, J.M. Mermet, Spectrochim. Acta Part B51 (1996) 1517–1526.
doi: 10.1016/0584-8547(96)01522-4
J.W. Olesik, J.A. Hartshorne, N. Casey, E. Linard, J.R. Dettman, Spectrochim. Acta Part B176 (2021) 106038.
doi: 10.1016/j.sab.2020.106038
S.E. Long, R.D. Snook, R.F. Browner, Spectrochim. Acta Part B40 (1985) 553–568.
doi: 10.1016/0584-8547(85)80105-1
J. Yu, S.X. Yang, D.X. Sun, et al., Microchem. J. 128 (2016) 325–330.
doi: 10.1016/j.microc.2016.05.019
R.M. Huang, Z.L. Zhu, H.T. Zheng, et al., J. Anal. At. Spectrom. 26 (2011) 1178–1182.
doi: 10.1039/c1ja00009h
P. Mezei, T. Cserfalvi, H.J. Kim, M.A. Mottaleb, Analyst126 (2001) 712–714.
doi: 10.1039/b010057i
R.K. Marcus, W.C. Davis, Anal. Chem. 73 (2001) 2903–2910.
doi: 10.1021/ac010158h
M.A. Mottaleb, Y.A. Woo, H.J. Kim, Microchem. J. 69 (2001) 219–230.
doi: 10.1016/S0026-265X(01)00087-X
P.C. Zheng, Y.J. Luo, J.M. Wang, et al., J. Anal. At. Spectrom. 36 (2021) 1228–1234.
doi: 10.1039/d1ja00070e
X.X. Peng, X.H. Guo, F. Ge, Z. Wang, J. Anal. At. Spectrom. 34 (2019) 394–400.
doi: 10.1039/c8ja00369f
M. Grotti, C. Lagomarsino, R. Frache, J. Anal. At. Spectrom. 20 (2005) 1365–1373.
doi: 10.1039/b510803a
C. Zheng, R.E. Sturgeon, C. Brophy, X. Hou, Anal. Chem. 82 (2010) 3086–3093.
doi: 10.1021/ac100229k
J. Mo, Q. Li, X. Guo, G. Zhang, Z. Wang, Anal. Chem. 89 (2017) 10353–10360.
doi: 10.1021/acs.analchem.7b02214
Leng An-Qin , Tian Yun-Fei , Wang Ming-Xuan , Wu Li , Xu Kai-Lai , Hou Xian-Deng , Zheng Cheng-Bin . A sensitive and compact mercury analyzer by integrating dielectric barrier discharge induced cold vapor generation and optical emission spectrometry. Chinese Chemical Letters, 2017, 28(2): 189-196. doi: 10.1016/j.cclet.2016.06.056
Yuan Mingli , Peng Xiaoxu , Ge Fen , Zhao Mingyue , Li Qing , Wang Zheng . Ultrasensitive determination of mercury by solution anode glow discharge atomic emission spectrometry coupled with hydride generation. Chinese Chemical Letters, 2020, 31(10): 2814-2818. doi: 10.1016/j.cclet.2020.03.055
Yao Liu , Er-Bing Yang , Rui Han , Di Zhang , Yong Ye , Yu-Fen Zhao . A new rhodamine-based fl uorescent chemosensor for mercury in aqueous media. Chinese Chemical Letters, 2014, 25(7): 1065-1068. doi: 10.1016/j.cclet.2014.04.033
Su-Hua Fan , Jie Shen , Hai Wu , Ke-Zhi Wangb , An-Guo Zhang . A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion. Chinese Chemical Letters, 2015, 26(5): 580-584. doi: 10.1016/j.cclet.2014.11.031
Xiaoxu Peng , Zheng Wang . Systematic evaluation of advance in application and discharge mechanism of solution electrode glow discharge. Chinese Chemical Letters, 2022, 33(1): 61-70. doi: 10.1016/j.cclet.2021.06.017
Peng Guo , Jun-Hai Huang , Qing-Chun Huang , Xu-Hong Qian . Synthesis of novel 1,3-oxazole derivatives with insect growthinhibiting activities. Chinese Chemical Letters, 2013, 24(11): 957-961.
Xue-Mei Li , Rui-Rui Zhao , Yu-Ling Wei , Dan Yang , Zhang-Jian Zhou , Jun-Feng Zhang , Ying Zhou . A rhodamine derivative for Hg2+-selective colorimetric and fluorescent sensing and its application to in vivo imaging. Chinese Chemical Letters, 2016, 27(6): 813-816. doi: 10.1016/j.cclet.2016.04.001
Guoyu Wei , Yuexiang Lu , Shuang Liu , Hongpeng Li , Xuegang Liu , Gang Ye , Jing Chen . Microplasma electrochemistry (MIPEC) strategy for accelerating the synthesis of metal organic frameworks at room temperature. Chinese Chemical Letters, 2021, 32(1): 497-500. doi: 10.1016/j.cclet.2020.04.019
Jiaxin Zhou , Li Zhao , Qiang Wang , Lixin Zuo , Ana Zhao , Huimin Yu , Xue Jiang , Xiaoli Xiong . Plasma-induced chemical etching generating Ni3S2 for formaldehyde detection. Chinese Chemical Letters, 2022, 33(6): 3035-3038. doi: 10.1016/j.cclet.2021.09.024
Wang Kaijie , Kong Qing , Chen Xiaoqiang , Yoon Juyoung , Swamy K.M. K. , Wang Fang . A bifunctional rhodamine derivative as chemosensor for recognizing Cu2+ and Hg2+ ions via different spectra. Chinese Chemical Letters, 2020, 31(5): 1087-1090. doi: 10.1016/j.cclet.2019.11.013
Chen Tao , Lin Yao , Li Haochen , Yang Rui , Hou Xiandeng , Zheng Baozhan , Zheng Chengbin . Reduction of mercury(Ⅱ) by electrons contained in carbon dots: An environmentally friendly cold vapor generation for mercury analysis. Chinese Chemical Letters, 2020, 31(10): 2678-2682. doi: 10.1016/j.cclet.2020.06.005
Jingyi Zhao , Rui Liu , Yi Lü . 元素访谈:蛇蝎美人——汞. University Chemistry, 2021, 36(10): 2107090-0. doi: 10.3866/PKU.DXHX202107090
REN Zhong-Hua , LU Yue-Xiang , YUAN Hang , WANG Zhe , YU Bo , CHEN Jing . Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution. Acta Physico-Chimica Sinica, 2015, 31(7): 1215-1218. doi: 10.3866/PKU.WHXB201506102
LENG An-Qin , LIN Yao , YONG Li , ZHENG Cheng-Bin . Progress and Application of Liquid Electrode Glow Discharge for Atomic Spectrometry. Chinese Journal of Analytical Chemistry, 2020, 48(9): 1131-1140. doi: 10.19756/j.issn.0253-3820.201034
Li Zhengtong , Wang Chengbing . Novel advances in metal-based solar absorber for photothermal vapor generation. Chinese Chemical Letters, 2020, 31(9): 2159-2166. doi: 10.1016/j.cclet.2019.09.030
Zhengwei Luo , Hui Jiang , Longzhi Hu , Dan Li , Wenhua Geng , Ping Wei . Effect of N2/Ar plasma treatment on the visible light photocatalytic activity of CuO/TiO2. Chinese Journal of Catalysis, 2014, 35(10): 1752-1760. doi: 10.1016/S1872-2067(14)60143-1
WANG Qian , ZHENG Lin , REN Fei , WENG Dong-Hai , XU Jia-Ming , YANG Le-Ping , GAO Jia-Nan . Determination of Lead, Arsenic and Mercury in Cream Cosmetics by Total Reflection X-Ray Fluorescence Spectrometry Using Suspension Sampling. Chinese Journal of Analytical Chemistry, 2018, 46(4): 517-523. doi: 10.11895/j.issn.0253-3820.171353
WANG Bo , LIU Ji-Xin , ZHANG Xiao-Hong , MAO Xue-Fei , DING Lan , NA Xing . Development of Semi-quantitative Solid Sampling Mercury Analyzer for Cosmetics. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1025-1031. doi: 10.11895/j.issn.0253-3820.181105
XIAO Qing , CHEN Lin , LI Wen-Feng , YANG Li-Qin , CAO Zhong , YU Xin-Yao , LONG Shu , HE Jing-Lin , XIAO Zhong-Liang . A Wireless Sensor Based on 3-Mercaptopropyl Sulfonic Acid Membrane Modified Gold Electrode for Detection of Hg2+. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1886-1894. doi: 10.11895/j.issn.0253-3820.181262
MA Xu , ZHANG Fang , PAN Jia-Chuan , GUO Peng-Ran , OUYANG Gang-Feng . Detection of Mercury in Environmental Water by Thermal Desorption-Atomic Absorption Spectrometry Coupled with Gold-immobilized Wood Based Solid Phase Microextraction. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1975-1981. doi: 10.11895/j.issn.0253-3820.181587